a) Cho S = 3 + 32 + 33 + ... + 31997 + 31998. Chứng minh rằng S \(⋮\)26
b) Cho a,b \(\in\)N. Chứng minh rằng nếu 7a + 3b \(⋮\)23 thì 4a + 5b \(⋮\)23, điều ngược lại có đúng không ?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xet bieu thuc: 6(7a+3b)+(4a+5b)
=42a+18b+4a+5b
=46a+23b
=23(2a+b)
Neu 6(7a+3b) chia het cho 23 thi 4a+5b chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 6(7a+3b) chia het cho 23 suy ra 4a+5b chia het cho 23
Neu 4a+5b chia het cho 23 thi 6(7a+3b) chia het cho 23:
Vi 23 chia het cho 23 suy ra 23(2a+b) chia het cho 23 suy ra 6(7a+3b)+(4a+5b) chia het cho 23 ma 4a+5b chia het cho 23 suy ra 6(7a+3b) chia het cho 23
Ta có: 7a+3b⋮23⇒6(7a+3b)⋮237a+3b⋮23⇒6(7a+3b)⋮23
⇒6(7a+3b)+(4a+5b)⋮23⇒6(7a+3b)+(4a+5b)⋮23
⇒46a+23b⋮23⇒23(2a+b)⋮23⇒46a+23b⋮23⇒23(2a+b)⋮23(Đúng)
Vậy 4a+5b⋮23
b: Gọi số bị trừ là x
Số trừ là x-98
Theo đề, ta có: \(x\left(x-98\right)=1998\)
\(\Leftrightarrow x^2-98x-1998=0\)
mà x nguyên
nên \(x\notin\varnothing\)
\(\left(7a+3b\right)⋮23\Leftrightarrow17\left(7a+3b\right)⋮23\)(vì \(\left(17,23\right)=1\))
\(\Leftrightarrow\left(119a+51b\right)⋮23\Leftrightarrow\left(119a-5.23a+51-2.23b\right)⋮23\)
\(\Leftrightarrow\left(4a+5b\right)⋮23\)
Do ta biến đổi tương đương nên điều ngược lại cũng đúng.
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2\right)+\left(3^3+3^4\right)+...+\left(3^{1997}+3^{1998}\right)\)
\(=3\left(1+3\right)+3^3\left(1+3\right)+...+3^{1997}\left(1+3\right)\)
\(=4\left(3+3^3+...+3^{1997}\right)⋮2\)
\(S=3+3^2+3^3+...+3^{1998}\)
\(=\left(3+3^2+3^3\right)+\left(3^4+3^5+3^6\right)+...+\left(3^{1996}+3^{1997}+3^{1998}\right)\)
\(=3\left(1+3+3^2\right)+3^4\left(1+3+3^2\right)+...+3^{1996}\left(1+3+3^2\right)\)
\(=13\left(3+3^4+...+3^{1996}\right)⋮13\).
Mà \(\left(2,13\right)=1\)nên \(S\)chia hết cho \(2.13=26\).