1, Cho góc nhọn xOy, vẽ đường tròn tâm O bán kính 3 cm cắt Ox ở A, cắt Oy ở B. Vẽ đường tròn tâm A và tâm B cùng bán kính 4 cm cắt nhau tại điểm M nằm trong góc xOy. Chứng minh OM là tia phân giác của góc xOy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xem hình vẽ:
Nối BC, AC.
∆OBC và ∆OAC có:
OB=OA(Bán kính)
BC=AC(gt)
OC cạnh chung
nên∆OBC = ∆OAC(c.c.c)
Nên BOC=AOC (hai góc tương ứng)
Vậy OC là tia phân giác xOy.
Ta có: AM = bán kính đường tròn tâm A
BM = bán kính đường tròn tâm B
Mà 2 đường tròn này có bán kính bằng nhau
Do đó, AM = BM
Xét \(\Delta \)OAM và \(\Delta \)OBM có:
OA = OB( = bán kính đường tròn tâm O)
MA = MB (cmt)
OM chung
\( \Rightarrow \) \(\Delta \)OAM = \(\Delta \)OBM ( c.c.c)
\( \Rightarrow \) \(\widehat {AOM} = \widehat {BOM}\) ( 2 góc tương ứng)
Mà OM nằm giữa 2 tia OA và OB
\( \Rightarrow \) OM là tia phân giác của góc AOB.
Nối BC, AC
ΔOBC và ΔOAC có:
OB = OA (bán kính)
AC = BC (gt)
OC cạnh chung
Nên ΔOBC = ΔOAC (c.c.c)
nên OC là tia phân giác của góc xOy.