Cho biểu thức
P = 2 m + 16 m + 6 m + 2 m - 3 + m - 2 m - 1 + 3 m + 3 - 2
Tìm giá trị tự nhiên m để P là số tự nhiên ?
A. m = 9
B. m = 4
C. m ∈ 4 ; 9
D. m = 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
thay m=-16;n=-4 ta được
M=-162*[-162-(-4)]*[-163-(-4)6]*[(-16)+(-4)2]
M=256*[-162-(-4)]*[-163-(-4)6]*[(-16)+16]
M=256*[-162-(-4)]*[-163-(-4)6]*0
ta thấy thừa số cuối cùng =0.mà 0 nhân với số nào cũng =0
=>M=0
1/Đặt Q(x) là thương ta có
\(x^3-7x^2+a=Q\left(x\right).\left(x-2\right)\).Thay x=2 đc
\(8-28+a=0\Leftrightarrow a=20\)
2/a/ĐKXĐ: x khác 2,-3
Có \(M=\frac{x+2}{x+3}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{1}{x-2}\)
\(\Leftrightarrow M=\frac{x^2-4}{\left(x-2\right)\left(x+3\right)}-\frac{5}{\left(x-2\right)\left(x+3\right)}-\frac{x+3}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x^2-4-5-x-3}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x^2-x-12}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{\left(x-4\right)\left(x+3\right)}{\left(x-2\right)\left(x+3\right)}\)
\(\Leftrightarrow M=\frac{x-4}{x-2}\)
b/\(M=\frac{x-2-2}{x-2}=1-\frac{2}{x-2}\).Để M nguyên thì \(2⋮x-2\Rightarrow x-2\in\left(+-1,+-2\right)\Rightarrow x\in\left(3,1,4,0\right)\)
Bafi1:
\(\left(3x+4\right)\left(9x^2-12x+16\right)=65\)
<=>\(27x^3+64=65\)
=>\(27x^3=1\)
=>\(x^3=\dfrac{1}{27}\)
=>\(x=\dfrac{1}{3}\)
Vậy...
Bafi2:
\(M=\left(x+y-1\right)^3-\left(x+y+1\right)^3+6\left(x+y\right)^2\)
\(=-2-6x^2-12xy-6y^2+6\left(x^2+2xy+y^2\right)\)
\(=-2\)
Vậy...(đpcm)
Chọn đáp án C.
Thử lại, với m= 4 thì P =3 ( thỏa mãn)
Với m = 0 thì P = -1 ( không là số tự nhiên).
Với m = 9 thì P = 2 ( thỏa mãn)
Vậy m = 4 hoặc m = 9.