Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = 2a. Tam giác SAB đều và nằm trong mặt phẳng vuông góc với đáy. Thể tích của khối chóp S. ABCD bằng
A. 3 6 a 3
B. 3 3 a 3
C. 1 3 a 3
D. 2 3 a 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Chọn D
Có đường cao của hình chóp đồng thời là đường cao tam giác đều
Đáp án A
Gọi H là trung điểm của AB, tam giác SAB cân tại S do đó SH⊥AB mà (SAB)⊥ (ABCD) nên SH⊥ (ABCD). Góc giữa SC và đáy là SCH =600.
Tam giác BHC vuông tại B nên
Tam giác SHC vuông tại H nên SH = SC.tanSCH
Do vậy
Đáp án là B
Mà ∆ SAB đều
Vậy thể tích hình chóp S.ABCD: = 2 a 3 6 3
Có đường cao của hình chóp đồng thời là đường cao tam giác đều
S A B ⇒ h = a 3 3 ⇒ V = a 3 2 . a . 2 a 3 = a 3 3 3
Chọn đáp án B.