K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 1 2016

Vì n không chia hết cho 35 nên n có dạng 35k + r (k, r thuộc  N, r <35), trong="" đó="" r="" chia="" 5="" dư="" 1,="" chia="" 7="" dư="">

Số nhỏ hơn 35 chia cho 7 dư 5 là 5, 12, 19, 26, 33, trong đó chỉ có 26 chia cho 5 dư 1. Vậy r = 26.

Số nhỏ nhất có dạng 35k + 36 là 26.

5 tháng 1 2016

a) 26

b)65

chắc chắn đúng

4 tháng 1 2023

b.Gọi số cần tìm là a.

Ta có: a : 3 dư 1 \(\Rightarrow\) a + 2 \(⋮\) 3

          a : 5 dư 3 \(\Rightarrow\) a + 2 \(⋮\) 5            và a là nhỏ nhất

          a : 7 dư 5 \(\Rightarrow\) a + 2 \(⋮\) 7

\(\Rightarrow\) a + 2 \(\in\) BCNN( 3, 5, 7 ).

\(\Rightarrow\) BCNN( 3, 5, 7 ) = 3.5.7 = 105.

\(\Rightarrow\) a + 2 = 105 

\(\Rightarrow\) a = 103

20 tháng 1 2023

Bài làm thì đúng nhưng bội chung lớn nhất là sai phải là bội chung nhỏ nhất mới đúng.batngo

20 tháng 12 2016

ai biết làm làm hộ tôi cái

3 tháng 9 2021

a,Theo đề bài, a : 5,6,7,8 (dư lần lượt 1,2,3,4)

Vậy (a+4) chia hết cho 5,6,7,8 Mà BCNN của 5,6,7,8 là: 2. 7. 3. 5= 840

a=840-4=836

    Đáp số: 836

AH
Akai Haruma
Giáo viên
11 tháng 10 2024

Lời giải:

Gọi số cần tìm là $a$.

Vì $a$ chia $3,4,5,6$ đều dư 2

$\Rightarrow a-2\vdots 3,4,5,6$

$\Rightarrow a-2=BC(3,4,5,6)$

$\Rightarrow a-2\vdots BCNN(3,4,5,6)$

$\Rightarrow a-2\vdots 60$

$\Rightarrow a=60k+2$ với $k$ tự nhiên

Vì $a$ chia $7$ dư $3$ nên:

$a-3\vdots 7$

Hay $60k-1\vdots 7$

$\Rightarrow 60k-1-56k-7\vdots 7$

$\Rightarrow 4k-8\vdots 7\Rightarrow 4(k-2)\vdots 7$

$\Rightarrow k-2\vdots 7\Rightarrow k=7m+2$ với $m$ tự nhiên.

Khi đó:

$a=60k+2 = 60(7m+2)+2 = 420m+122$

Với $m$ tự nhiên, $m$ nhỏ nhất bằng $0$, kéo theo $a$ nhỏ nhất bằng $122$

 

17 tháng 12 2015

dựa bài này mà làm

Tìm số tự nhiên nhỏ nhất x sao cho x chia 5 dư 1 chia 6 dư 2 chia 7 dư 3 chia 8 dư 4?

 Gọi số cần tìm là a thì a + 4 chia hết cho 5; 6; 7; 8, suy ra a+4 là BC(5; 6; 7; 8). mà a nhỏ nhất nên a+4 là BCNN(5; 6; 7; 8) 
Ta có: BCNN(5; 6; 7; 8) = 840 
Vậy a = 836

17 tháng 12 2015

gọi số đó là a nếu a được cộng thêm 1 thì các phép chia cho 2; 3; 4; 5; 6; 7 đều là chia hết

vậy a + 1 là bội của 2; 3; 4; 5; 6; 7

ta cần tim bội chung nhỏ nhất của a + 1 như như vây sẽ tim ra a nhỏ nhất

 

22 tháng 7 2015

a) Đặt n là số nhỏ nhất chia 5 dư 1, chia 7 dư 5

Ta có: n chia 5 dư 1 => n+9 chia hết cho 5    (1)

          n chia 7 dư 5 => n+9 chia hết cho 7    (2)

Từ (1)(2) và n nhỏ nhất => n+9 \(\in\) BCNN(5;7)=35

n+9=35 => n=26

b) Đặt e là số tự nhiên nhỏ nhất chia 21 dư 2, chia 12 dư 5

Ta có : e chia 21 dư 2 => e+19 chia hết cho 21    (1)

           e chia 12 dư 5 => e+19 chia hết cho 12    (2)

Từ (1)(2) và e nhỏ nhất => e+19 \(\in\) BCNN(21;12)=84

e+19=84 => e=65

5 tháng 3 2017

65 bạn nhé 

15 tháng 11 2015

A :61

B thì ko bít

30 tháng 7 2023

1, Gọi số đó là :a

=>a-3⋮4,6,8

=>a-3 ϵ\(\left\{24,48,72,96,120,...\right\}\)

=>a ϵ\(\left\{27,51,75,99,123,...\right\}\)

Vì a là số nhỏ nhất có 3 chữ số thỏa mãn đề bài nên a=123.

5 tháng 4 2024

Tìm kiếm bài học, bài tập, mã lớp, mã khóa học...

hehe

15 tháng 8 2020

a)

CM chiều xuôi.

Có:     \(2x+3y⋮17.\)    CMR:     \(9x+5y⋮17\)

\(\Rightarrow9\left(2x+3y\right)⋮17\)

\(\Rightarrow18x+27y⋮17\)

\(\Rightarrow18x+10y+17y⋮17\)

MÀ    \(17y⋮17\)

\(\Rightarrow2\left(9x+5y\right)⋮17\)

\(\Rightarrow9x+5y⋮17\left(đpcm\right)\)     do 2 ko chia hết cho 17

CM chiều đảo: 

Có:    \(9x+5y⋮17\)     . CMR:     \(2x+3y⋮17\)

=>   \(18x+10y⋮17\)

=>   \(18x+27y-17y⋮17\)

=>   \(18x+27y⋮17\)    do     \(17y⋮17\)

=>    \(2x+3y⋮17\)     do 9 ko chia hết cho 17.

VẬY QUA CM ĐẢO VÀ XUÔI TA CÓ ĐPCM.

**** ĐỀ BÀI THIẾU NGHIÊM TRỌNG LÀ    \(x;y\inℤ\)     nhé !!!!

a) Ta phải chứng minh: 2.x + 3.y chia hết cho 17 thì 9.x + 5.y chia hết cho 17

Ta có 4.(2x + 3y) + (9x+ 5y) = 17x + 17y chia hết cho 17

Do vậy : 2x + 3y chia hết cho 17; 4.(2x + 3y) chia hết cho 17; 9x + 5y chia hết cho 17

Ngược lại : Ta có 4.(2x + 3y) chia hết cho 17 mà (4;17) = 1 => 2x + 3y chia hết cho 17. 

b) Gọi số cần tìm là a. Theo đề bài ra ta có a:9 dư 5 => 2a - 1 chia hết cho 9

a :7 dư 4 => 2a - 1 chia hết cho 7; a: 5 dư 3 => 2a - 1 chia hết cho 5

Vì 2a - 1 chia hết cho 9,7,5 và a nhỏ nhất => 2a - 1 thuộc BCNN(9;5;7)

9 = 32; 5 = 5; 7 = 7 => BCNN(9;5;7) = 32.5.7 = 315. Ta có: 2a - 1 = 135 

2a = 315 + 1 => 2a = 316 => a = 316 : 2 = 158

=> Số thỏa mãn yêu cầu đề bài mà ta cần tìm là 158.