K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 11 2017

Đáp án B

Dễ thấy y’ = 0 tại x = -2 và x = 1

Lại thấy y’ < 0 trên khoảng (-∞;2) và y’ ≥ 0 trên khoảng (-2;+∞)

Từ đó ta có bảng biến thiên

16 tháng 8 2017

18 tháng 4 2018

Đáp án C

Từ đồ thị hàm số g = f’(x) ta thấy: hàm số f’(x) = 0 tại 2 điểm phân biệt x = -2 và x = 1

Mặt khác, tại x = 1 thì f’(x) đổi dấu từ dương sang âm, do đó hàm số y = f(x) đạt cực đại tại x = 1

23 tháng 5 2019

Đáp án C

Từ đồ thị hàm số g = f’(x) ta thấy: hàm số f’(x) = 0 tại 2 điểm phân biệt x = -2 và x = 1

Mặt khác, tại x = 1 thì f’(x) đổi dấu từ dương sang âm, do đó hàm số y = f(x) đạt cực đại tại x = 1

20 tháng 5 2017

Đáp án A

Phương pháp: Quan sát đồ thị hàm số y = f ' x  để tìm khoảng dương, âm của f ' x , từ đó tìm được khoảng đồng biến, nghịch biến của f x .

Cách giải:

Từ đồ thị hàm số  y = f ' x  suy ra hàm số  y = f x nghịch biến trên − ∞ − 1  và 1 ; 2  (làm y'âm) và đồng biến trên − 1 ; 1  (làm y'dương).

Suy ra B, C, D sai và A đúng.

Chú ý khi giải:

HS có thể nhầm lẫn thành đồ thị hàm số  y = f x  do đọc không kĩ đề dẫn đến chọn sai đáp án.

23 tháng 5 2018

Dựa vào đồ thị hàm số ta thấy:

⇒  Hàm số f x  đồng biến trên    - ∞ ; - 1 và  3 , + ∞  

Chọn C.

14 tháng 10 2017

Bảng xét dấu g ' x :

 Hàm số  g ' x  đồng biến trên khoảng  - 2 ; 0 : Là khẳng định đúng.

 

Chọn: B

4 tháng 11 2017

Đáp án A

8 tháng 2 2019

13 tháng 12 2018

Chọn D