Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
Ta có f ' x = 0 ⇔ x = 1 ; 2 ; 3 ⇒ hàm số có 3 điểm cực trị
Lại có g x = f x - m - 2018 ⇒ g ' x = f ' x = 0 ⇒ có 3 nghiệm phân biệt
Suy ra phương trình f x = m + 2018 có nhiều nhất 4 nghiệm
Xét y = f x + 1 ⇒ y ' = f ' x + 1 < 0 ⇔ [ x + 1 ∈ 1 ; 2 x + 1 ∈ 3 ; + ∞ ⇔ [ 0 < x < 1 x > 2
Suy ra hàm số y = f(x + 1) nghịch biến trên khoảng (0;1).
Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A
Chọn D.
Dựa vào bảng biến thiên suy ra hàm số nghịch biến trên (0;1)
Đặt g ( x ) = 3 f ( x ) - x 3 . Hàm số ban đầu có dạng y=|g(x)|
Ta có g ' ( x ) = 3 f ' ( x ) - 3 x 2 .
Cho g'(x)=0 ⇔ [ x = 0 x = 1 x = 2
Dễ thấy g(0)=0. Ta có bảng biến thiên
Dựa vào BBT suy ra hàm số y=|g(x)| đồng biến trên khoảng (0;2) và a ; + ∞ với g(a)=0
Chọn đáp án C.
Chọn A.
Tập xác định của hàm số y=f(x) là D=R Từ đồ thị đã cho ta có: f ' ' x = 0 ⇔ x = - 1 x = 2 .
Bảng biến thiên.
Dựa vào bảng biến thiên của hàm số y=f(x) ta nhận thấy hàm số y=f(x) đồng biến trên khoảng
-
1
;
+
∞
.
Đáp án C
Phương pháp giải: Dựa vào hình dáng của đồ thị để xét tính đơn điệu.
Lời giải: Dựa vào hình vẽ, ta thấy hàm số đồng biến trên khoảng - 1 ; 0 và 1 ; + ∞
Dựa vào đồ thị hàm số ta thấy:
⇒ Hàm số f x đồng biến trên - ∞ ; - 1 và 3 , + ∞
Chọn C.