Cho hình chóp S.ABC có SA ⊥ (ABC), tam giác ABC vuông cân tại B, AC= 2a và SA=a. Gọi M là trung điểm của SB. Tính thể tích khối chóp S.AMC.
A. a 3 9
B. a 3 3
C. a 3 6
D. a 3 12
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án D
Gọi H là trung điểm của BC.
Do tam giác ABC vuông cân tại A nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Mặt khác do SA=SB=SC nên S thuộc trục đường tròn ngoại tiếp ABC
⇒ S H ⊥ A B C A H = B C 2 = a , S H = S A 2 - A H 2 = a A B = A C = B C 2 a 2
Thể tích khối chóp là
V = 1 3 . S H . 1 2 . A B . A C = a 3 3
Đáp án là B
Tam giác SAB vuông tại A có S A 2 = S B 2 - A B 2 = 4 a 2 nên SA= 2a
Có S A B C = 1 2 A B . A C = 2 a 2
Có V = 1 3 S A . S A B C = 4 a 3 3
Đáp án A
Xét tam giác SAC vuông tại A có AP là đường cao, ta có: