K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 11 2019

Đồ thị hàm số có tiệm cận đứng x = a > 0; tiệm cận ngang y = b > 0

Mặt khác, ta thấy dạng đồ thị là đường cong đi xuống từ trái sang phải trên các khoảng xác định của nó nên 

7 tháng 2 2019

Đáp án là C 

I.Sai ví dụ hàm số y = x 3  đồng biến trên

(−¥; +¥) nhưng y' ³  0, "x Î (−¥; +¥

II.Đúng

III.Đúng

21 tháng 5 2019

20 tháng 10 2018

Đáp án C

5 tháng 8 2023

ĐỀ ĐÂY NHA
loading...

loading...

20 tháng 5 2018

Đáp án D

Ta có hàm số  g x = f x - 2018  là hàm số bậc ba liên tục trên R.

Do a>0 nên  l i m x → - ∞ g ( x ) = - ∞ ;   l i m x → + ∞ g ( x ) = + ∞

Để ý g 0 = d - 2018 > 0 ;   g 1 = a + b + c + d - 2018 < 0  nên phương trình g(x)=0 có đúng 3 nghiệm phân biệt trên R.

Khi đó đồ thị hàm số  g x = f x - 2018 cắt trục hoành tại 3điểm phân biệt nên hàm số  y = f x - 2018  có đúng 5 cực trị.

15 tháng 6 2017

Đáp án D

17 tháng 5 2018

Đáp án D

Phương pháp:

+) Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017

+) Tìm số điểm cực trị của hàm số h(x) bằng cách giải phương trình h'(x) = 0

+) Xác định dấu của h(0); h(1); h(-1) và vẽ đồ thị hàm số y = h(x), từ đó vẽ đồ thị hàm số y = |h(x)| và kết luận.

Cách giải:

Xét hàm số h(x) = f(x) - 2017 = ax4 + bx2 + c - 2017,

 

với a > 0, c > 2017, a + b + c < 2017 nên b < 0

Ta có: h(0) = c - 2017 > 0, h(-1) = h(1) = a + b + c - 2017 < 0

⇒ h(0).(h-1) < 0, h(0).h⁡(1) < 0

⇒ ∃ x1, x2: x1 ∈ (-1;0), x2 ∈ (0;1) mà h(x1) = h(x2) = 0

Do đó, đồ thị hàm số y = h(x) và y = |h(x)| dạng như hình vẽ bên.

Vậy, số cực trị của hàm số y = |f(x) - 2017| là 7

5 tháng 1 2018

29 tháng 12 2019

Đáp án D

Trên khoảng ( a ; b ) và ( c ; + ∞ ) hàm số đồng biến vì y'>0 đồ thị nằm hoàn toàn trên trục Ox

Hàm số nghịch biến trên các khoảng ( - ∞ ; a ) và (b;c) vì y'<0

Suy ra x=b là điểm cực đại mà y(b) <0 do đó trục hoành cắt đồ thị tại hai điểm phân biệt. Với d<0 ta có

17 tháng 5 2017