-5.\(\sqrt{\text{16}}\)+\(\sqrt{\text{0,25}}\) -3. . \(\sqrt{\dfrac{\text{16}}{\text{25}}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(=-5\cdot\dfrac{1}{2}+0-5\cdot\dfrac{6}{5}=-\dfrac{5}{2}-6=-\dfrac{17}{2}\)
\(=\left(\dfrac{3}{2}\cdot\dfrac{2}{5}+2\cdot\dfrac{1}{5}\right):\dfrac{3}{8}=\left(\dfrac{3}{5}+\dfrac{2}{5}\right)\cdot\dfrac{8}{3}=\dfrac{8}{3}\)
a, \(=7\sqrt{2}-6\sqrt{2}+\frac{1}{2}.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)
b, \(=4\sqrt{a}+4\sqrt{10a}-9\sqrt{10a}=4\sqrt{a}-5\sqrt{10a}\)
c, \(=6+\sqrt{15}-\sqrt{60}=6+\sqrt{15}-2\sqrt{15}=6-\sqrt{15}\)
Rút gọn
a) Ta có: \(\sqrt{98}-\sqrt{72}+\frac{1}{2}\sqrt{8}\)
\(=\sqrt{2}\left(\sqrt{49}-\sqrt{36}+\frac{1}{2}\sqrt{4}\right)\)
\(=\sqrt{2}\left(7-6+\frac{1}{2}\cdot2\right)\)
\(=\sqrt{2}\left(1+1\right)=2\sqrt{2}\)
b) Ta có: \(\sqrt{16a}+2\sqrt{40a}-3\sqrt{90a}\)
\(=\sqrt{a}\left(\sqrt{16}+2\sqrt{40}-3\sqrt{90}\right)\)
\(=\sqrt{a}\left(4+4\sqrt{10}-9\sqrt{10}\right)\)
\(=\sqrt{a}\left(4-5\sqrt{10}\right)\)
\(=4\sqrt{a}-5\sqrt{10a}\)
c) Ta có: \(\left(2\sqrt{3}+\sqrt{5}\right)\cdot\sqrt{3}-\sqrt{60}\)
\(=6+\sqrt{15}-\sqrt{60}\)
\(=6-\sqrt{15}\)
Bài 1: Tính
a) Ta có: \(\left(\sqrt{3}+2\right)^2\)
\(=\left(\sqrt{3}\right)^2+2\cdot\sqrt{3}\cdot2+2^2\)
\(=3+4\sqrt{3}+4\)
\(=7+4\sqrt{3}\)
b) Ta có: \(-\left(\sqrt{2}-1\right)^2\)
\(=-\left[\left(\sqrt{2}\right)^2-2\cdot\sqrt{2}\cdot1+1^2\right]\)
\(=-\left(2-2\sqrt{2}+1\right)\)
\(=-\left(3-2\sqrt{2}\right)\)
\(=2\sqrt{2}-3\)
Bài 2: Tính
a) Ta có: \(0.5\cdot\sqrt{100}-\sqrt{\frac{25}{4}}\)
\(=\frac{1}{2}\cdot10-\frac{5}{2}\)
\(=5-\frac{5}{2}\)
\(=\frac{5}{2}\)
b) Ta có: \(\left(\sqrt{1\frac{9}{16}}-\sqrt{\frac{9}{16}}\right):5\)
\(=\left(\sqrt{\frac{25}{16}}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\left(\frac{5}{4}-\frac{3}{4}\right)\cdot\frac{1}{5}\)
\(=\frac{2}{4}\cdot\frac{1}{5}\)
\(=\frac{1}{10}\)
Bài 3: So sánh
a) Ta có: \(3\sqrt{2}=\sqrt{3^2\cdot2}=\sqrt{18}\)
\(2\sqrt{3}=\sqrt{2^2\cdot3}=\sqrt{12}\)
mà \(\sqrt{18}>\sqrt{12}\)(Vì 18>12)
nên \(3\sqrt{2}>2\sqrt{3}\)
\(\Leftrightarrow\sqrt{3\sqrt{2}}>\sqrt{2\sqrt{3}}\)
b) Ta có: \(\left(15-2\sqrt{10}\right)^2\)
\(=225-2\cdot15\cdot2\sqrt{10}+\left(2\sqrt{10}\right)^2\)
\(=225-60\sqrt{10}+40\)
\(=265-60\sqrt{10}\)
\(=135+130-60\sqrt{10}\)
Ta có: \(\left(3\sqrt{15}\right)^2=3^2\cdot\left(\sqrt{15}\right)^2=9\cdot15=135\)
Ta có: \(130-60\sqrt{10}\)
\(=\sqrt{16900}-\sqrt{36000}< 0\)(Vì 16900<36000)
\(\Leftrightarrow130-60\sqrt{10}+135< 135\)(cộng hai vế của BĐT cho 135)
\(\Leftrightarrow\left(15-2\sqrt{10}\right)^2< \left(3\sqrt{15}\right)^2\)
\(\Leftrightarrow15-2\sqrt{10}< 3\sqrt{15}\)
\(\Leftrightarrow\frac{15-2\sqrt{10}}{3}< \frac{3\sqrt{15}}{3}=\sqrt{15}\)
hay \(\frac{15-2\sqrt{10}}{3}< \sqrt{15}\)
\(=4\cdot5-2\cdot\dfrac{2}{3}=20-\dfrac{4}{3}=\dfrac{56}{3}\)
\(\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{16}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{6}+\sqrt{8}+\sqrt{4}+\sqrt{4}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\sqrt{2}+\sqrt{3}+\sqrt{4}+\sqrt{4}+\sqrt{6}+\sqrt{8}}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)+\sqrt{2}\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=\dfrac{\left(\sqrt{2}+\sqrt{3}+\sqrt{4}\right)\left(1+\sqrt{2}\right)}{\sqrt{2}+\sqrt{3}+\sqrt{4}}\)
\(=1+\sqrt{2}\)
\(=-5\cdot4+0.5-3\cdot\dfrac{4}{5}=-19.5-\dfrac{12}{5}=-\dfrac{219}{10}\)