K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 7 2017

bạn vào câu hỏi tương tự ấy 

15 tháng 7 2017

trong câu hỏi tương tự sẽ có bài tương tự mà bạn. chắc sẽ dễ hiểu thôi à nha

27 tháng 2 2018

1. Ta có : |3-x|=3-x nếu 3-x> hoặc =0 hay x> hoặc =3; |3-x|=x-3 nếu 3-x<0 hay x<3

Th1: Với x > hoặc =3 thì ta có:3-x=1-3x=>1-3x+x=3=>1-2x=3=>2x=-2=>x=-1(loại vì không thỏa mãn điều kiện x>3)

Th2: với x<3 thì ta có: x-3=1-3x=>x-1+3x=3=>4x=4=>x=1(thỏa mãn điều kiện x<3)

vậy x=1

11 tháng 7 2018

a, \(n^2+n=n\left(n+1\right)\)

Vì n(n+1) là tích 2 số tự nhiên liên tiếp nên \(n\left(n+1\right)⋮2\)

Vậy ...

b, \(a^2b+b^2a=ab\left(a+b\right)\)

Nếu a chẵn, b lẻ thì \(ab\left(a+b\right)⋮2\)

Nếu a lẻ, b chẵn thì \(ab\left(a+b\right)⋮2\)

Nếu a,b cùng chẵn thì \(ab⋮2\Rightarrow ab\left(a+b\right)⋮2\)

Nếu a,b cùng lẻ thì \(a+b⋮2\Rightarrow ab\left(a+b\right)⋮2\)

c, \(51^n+47^{102}=\overline{...1}+47^{100}.47^2=\overline{...1}+\left(47^4\right)^{25}.47^2=\overline{...1}+\overline{...1}^{25}\cdot.\overline{...9}=\overline{...1}+\overline{...9}=\overline{...0}⋮10\)

2 tháng 8 2021

a) \(3^{10}+3^{11}+3^{12}\)

⇔ \(3^{10}\left(1+3+3^2\right)\)

⇔  \(3^{10}.13\) 

⇒   \(3^{10}.13\)  chia hết cho 13

11 tháng 7 2018

a) Gọi 5 số tự nhiên đó là a; a+1; a+2; a+3;a+4

Tổng 5 số đó là a + a+1 + a+2 + a+3 + a+4

= (a+a+a+a+a) + (1+2+3+4)

= 5a + 10

= 5(a+2) chia hết cho 5

Vậy tổng của 5 số tự nhiên chia hết cho 5

5 tháng 7 2015

Ta có:

\(8^{102}-2^{102}\) = \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)

Vì \(8^4\)và \(2^4\)có hàng đv là 6 nên \(\left(8^4\right)^{51}\)và \(\left(2^4\right)^{51}\)cũng có hàng đv là 6.

=> \(\left(8^4\right)^{51}-\left(2^4\right)^{51}\)có hàng đv là 0.

=> \(8^{102}-2^{102}\)chia hết cho  10

5 tháng 7 2015

Bạn xem lại đề, phải là chia hết cho 19. Có thể tìm thấy 1 ví dụ trái với đề bài.

19 tháng 11 2018

\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)

\(3A=3^{102}+3^{103}+3^{104}+...+3^{201}\)

\(3A-A=\left(3^{102}+3^{103}+3^{104}+3^{201}\right)-\left(3^{101}+3^{102}+3^{103}+...+3^{201}\right)\)

\(2A=3^{201}-3^{101}\)

\(2A=3^{100}\)

\(\Rightarrow A=3^{100}:2\)

19 tháng 11 2018

\(A=3^{101}+3^{102}+3^{103}+...+3^{200}\)

\(A=3^{101}+3^{102}+3^{103}+3^{104}+...+3^{197}+3^{198}+3^{199}+3^{200}\)

\(A=3^{100}\left(3+3^2+3^3+3^4\right)+...+3^{196}\left(3+3^2+3^3+3^4\right)\)

\(A=120\left(3^{100}+...+3^{196}\right)⋮120\)