K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 9 2017

8 x 3  + 12 x 2  + 6x + 1 = 0

2 x 3  + 3. 2 x 2 .1 + 3.(2x). 1 2  + 1 3  = 0

2 x + 1 3  = 0

2x + 1 = 0

x = (-1)/2

14 tháng 8 2016

a) (x-2)- 6(x+1)2 - x3 + 12 = 0 

<=> x3-6x2+12x-8-6(x2+2x+1)-x3+12=0

<=> x3-6x2+12x-8-6x2-12x-6-x3+12=0

<=> -12x2+4=0

<=> \(x=\frac{1}{\sqrt{3}},x=-\frac{1}{\sqrt{3}}\)

vậy pt có 2 nghiệm....

b) x3 - 6x2 + 12x - 8 = 0 

<=> (x3-2x2)-(4x2-8x)+(4x+8)=0

<=> (x-2)(x2-4x+4)=(x-2)3=0

=> x=2 là nghiệm

c) 8x3 - 12x2 + 6x - 1 = 0

<=> (2x-1)3=0

<=> x=1/2

14 tháng 8 2016

a) \(\left(x-2\right)^3-6\left(x+1\right)^2-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6\left(x^2+2x+1\right)-x^3+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8-6x^2-12x-6-x^3+12=0\)

\(\Leftrightarrow-12x^2-2=0\)

\(\Leftrightarrow-2\left(6x^2+1\right)=0\)

\(\Leftrightarrow6x^2+1=0\) (vô nghiệm)

Vậy không có giá trị nào của x thỏa mãn pt

b) \(x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Leftrightarrow x-2=0\)

\(\Leftrightarrow x=2\)

Vậy x=2

c) \(8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Leftrightarrow2x-1=0\Leftrightarrow x=\frac{1}{2}\)

Vậy \(=\frac{1}{2}\)

13 tháng 12 2023

a: \(3\left(x-3\right)-6x=0\)

=>\(3x-9-6x=0\)

=>-3x-9=0

=>3x+9=0

=>3x=-9

=>\(x=-\dfrac{9}{3}=-3\)

b: Đề thiếu vế phải rồi bạn

c: \(2\left(x-3\right)+3x=9\)

=>2x-6+3x=9

=>5x-6=9

=>5x=6+9=15

=>x=15/5=3

d: \(x\left(x-11\right)+2\left(x-11\right)=0\)

=>\(\left(x-11\right)\left(x+2\right)=0\)

=>\(\left[{}\begin{matrix}x-11=0\\x+2=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=11\\x=-2\end{matrix}\right.\)

e: \(x\left(x+2\right)+8=x^2\)

=>\(x^2+2x+8=x^2\)

=>2x+8=0

=>2x=-8

=>x=-8/2=-4

f: \(8\left(x+1\right)+2x=-2\)

=>\(8x+8+2x=-2\)

=>10x=-2-8=-10

=>\(x=-\dfrac{10}{10}=-1\)

g: 12-3(x+2)=0

=>3(x+2)=12

=>x+2=12/3=4

=>x=4-2=2

11 tháng 10 2020

a) \(x\left(x-2\right)-7x+14=0\)

\(\Leftrightarrow x\left(x-2\right)-7\left(x-2\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-7\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) \(x^2\left(x-3\right)+12-4x=0\)

\(\Leftrightarrow x^2\left(x-3\right)-4\left(x-3\right)=0\)

\(\Leftrightarrow\left(x^2-4\right)\left(x-3\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=3\\x^2=4\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) \(x^2+12x-13=0\)

\(\Leftrightarrow\left(x^2-x\right)+\left(13x-13\right)=0\)

\(\Leftrightarrow x\left(x-1\right)+13\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(x+13\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) \(4x^2-4x=8\)

\(\Leftrightarrow x^2-x-2=0\)

\(\Leftrightarrow\left(x+1\right)\left(x-2\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) \(x^2-6x=1\)

\(\Leftrightarrow\left(x-3\right)^2=10\)

\(\Leftrightarrow\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}}\Rightarrow\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)

11 tháng 10 2020

a) x( x - 2 ) - 7x + 14 = 0

<=> x( x - 2 ) - 7( x - 2 ) = 0

<=> ( x - 2 )( x - 7 ) = 0

<=> \(\orbr{\begin{cases}x-2=0\\x-7=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=2\\x=7\end{cases}}\)

b) x2( x - 3 ) + 12 - 4x = 0

<=> x2( x - 3 ) - 4( x - 3 ) = 0

<=> ( x - 3 )( x2 - 4 ) = 0

<=> \(\orbr{\begin{cases}x-3=0\\x^2-4=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=3\\x=\pm2\end{cases}}\)

c) x2 + 12x - 13 = 0

<=> x2 - x + 13x - 13 = 0

<=> x( x - 1 ) + 13( x - 1 ) = 0

<=> ( x - 1 )( x + 13 ) = 0

<=> \(\orbr{\begin{cases}x-1=0\\x+13=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=1\\x=-13\end{cases}}\)

d) 4x2 - 4x = 8

<=> 4( x2 - x ) = 8

<=> x2 - x = 2

<=> x2 - x - 2 = 0

<=> x2 + x - 2x - 2 = 0

<=> x( x + 1 ) - 2( x + 1 ) = 0

<=> ( x + 1 )( x - 2 ) = 0

<=> \(\orbr{\begin{cases}x+1=0\\x-2=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x=-1\\x=2\end{cases}}\)

e) x2 - 6x = 1

<=> x2 - 6x + 9 = 1 + 9

<=> ( x - 3 )2 = 10

<=> ( x - 3 )2 = ( ±√10 )2

<=> \(\orbr{\begin{cases}x-3=\sqrt{10}\\x-3=-\sqrt{10}\end{cases}\Leftrightarrow}\orbr{\begin{cases}x=3+\sqrt{10}\\x=3-\sqrt{10}\end{cases}}\)

Giải:

a) \(\dfrac{-5}{6}-x=\dfrac{7}{12}+\dfrac{-1}{3}\)  

     \(\dfrac{-5}{6}-x=\dfrac{1}{4}\)

               \(x=\dfrac{-5}{6}-\dfrac{1}{4}\) 

               \(x=\dfrac{-13}{12}\) 

b) \(2.\left(x-\dfrac{1}{3}\right)=\left(\dfrac{1}{3}\right)^2+\dfrac{5}{9}\) 

    \(2.\left(x-\dfrac{1}{3}\right)=\dfrac{1}{9}+\dfrac{5}{9}\) 

    \(2.\left(x-\dfrac{1}{3}\right)=\dfrac{2}{3}\)  

             \(x-\dfrac{1}{3}=\dfrac{2}{3}:2\) 

             \(x-\dfrac{1}{3}=\dfrac{1}{3}\) 

                    \(x=\dfrac{1}{3}+\dfrac{1}{3}\) 

                    \(x=\dfrac{2}{3}\) 

c) \(\left|2x-\dfrac{3}{4}\right|-\dfrac{3}{8}=\dfrac{1}{8}\) 

           \(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{8}+\dfrac{3}{8}\) 

            \(\left|2x-\dfrac{3}{4}\right|=\dfrac{1}{2}\) 

\(\Rightarrow\left[{}\begin{matrix}2x-\dfrac{3}{4}=\dfrac{1}{2}\\2x-\dfrac{3}{4}=\dfrac{-1}{2}\end{matrix}\right.\) 

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{5}{8}\\x=\dfrac{1}{8}\end{matrix}\right.\) 

d) \(\dfrac{2}{3}x+\dfrac{1}{6}x=3\dfrac{5}{8}\) 

\(x.\left(\dfrac{2}{3}+\dfrac{1}{6}\right)=\dfrac{29}{8}\) 

            \(x.\dfrac{5}{6}=\dfrac{29}{8}\) 

                \(x=\dfrac{29}{8}:\dfrac{5}{6}\) 

                \(x=\dfrac{87}{20}\)

23 tháng 7 2017

\(a,x^3-3x^2+3x-1=0\)

\(\Leftrightarrow\left(x-1\right)^3=0\)

\(\Rightarrow x-1=0\Rightarrow x=1\)

\(b,\left(x-2\right)^3+6\left(x+1\right)^2-x+12=0\)

\(\Leftrightarrow x^3-6x^2+12x-8+6x^2+12x+6-x+12=0\)\(\Leftrightarrow x^3+23x+10=0\) (1)

Đặt \(t=\dfrac{x}{\dfrac{2\sqrt{69}}{3}}\Leftrightarrow x=\dfrac{2\sqrt{69}}{3}t\)

Khi đó: (1) \(\Leftrightarrow4t^3+3t=-0,2355375386\)

Đặt a= \(\sqrt[3]{-0,2355375386+\sqrt{-0,2355375386^2+1}}\)

\(\alpha=\dfrac{1}{2}\left(a-\dfrac{1}{a}\right)\) , ta được:

\(4\alpha^3+3\alpha=-0,2355375386\) , vậy \(t=\alpha\) là nghiệm của pt

Vậy t= \(\dfrac{1}{2}\left(\sqrt[3]{-0,2355375386}+\sqrt{-0,2355375386^2+1}\right)\) \(\left(\sqrt[3]{-0,2355375386-\sqrt{-0,2355375386^2+1}}\right)\)\(=-0,07788262891\)

\(\Rightarrow x=\dfrac{2\sqrt{69}}{3}.t=-0,4312944692\)

\(c,x^3+6x^2+12x+8=0\)

\(\Leftrightarrow\left(x+2\right)^3=0\)

\(\Leftrightarrow x+2=0\Rightarrow x=-2\)

\(d,x^3-6x^2+12x-8=0\)

\(\Leftrightarrow\left(x-2\right)^3=0\)

\(\Rightarrow x-2=0\Rightarrow x=2\)

\(e,8x^3-12x^2+6x-1=0\)

\(\Leftrightarrow\left(2x-1\right)^3=0\)

\(\Rightarrow2x-1=0\Rightarrow x=\dfrac{1}{2}\)

\(f,x^3+9x^2+27x+27=0\)

\(\Leftrightarrow\left(x+3\right)^3=0\)

\(\Rightarrow x+3=0\Rightarrow x=-3\)

15 tháng 2 2020

7)(16-8x)(2-6x)=0  

=> 16 - 8x = 0 hoặc 2 - 6x = 0

=> 16 = 8x hoặc 2 = 6x

=> x = 2 hoặc x = 1/3
8) (x+4)(6x-12)=0  

=> x + 4 = 0 hoặc 6x - 12 = 0

=> x = -4 hoặc x = 2
9) (11-33x)(x+11)=0 

=> 11 - 33x = 0 hoặc x + 11 = 0

=> x = 1/3 hoặc x = -11
10) (x-1/4)(x+5/6)=0 

=> x - 1/4 = 0 hoặc x + 5/6 = 0

=> x = 1/4 hoặc x = -5/6
11) (7/8-2x)(3x+1/3)=0  

=> 7/8 - 2x = 0 hoặc 3x + 1/3 = 0

=> 2x = 7/8 hoặc 3x = -1/3

=> x = 7/16 hoặc x = -1/9
12)3x-2x^2=0  

=> x(3 - 2x) = 0

=> x = 0 hoặc 3 - 2x = 0

=> x = 0 hoặc x = 3/2

15 tháng 2 2020

\(a,\left(16-8x\right)\left(2-6x\right)=0\)

\(\hept{\begin{cases}16-8x=0\\2-6x=0\end{cases}\Rightarrow\hept{\begin{cases}x=2\\x=\frac{1}{3}\end{cases}}}\)

\(b,\left(x+4\right)\left(6x-12\right)=0\)

\(\hept{\begin{cases}x+4=0\\6x-12=0\end{cases}\Rightarrow\hept{\begin{cases}x=-4\\x=2\end{cases}}}\)

\(c,\left(11-33x\right)\left(x+11\right)=0\)

\(\hept{\begin{cases}11-33x=0\\x+11=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{3}\\x=-11\end{cases}}}\)

\(d,\left(x-\frac{1}{4}\right)\left(x+\frac{5}{6}\right)=0\)

\(\hept{\begin{cases}x-\frac{1}{4}=0\\x+\frac{5}{6}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{1}{4}\\x=-\frac{5}{6}\end{cases}}}\)

\(e,\left(\frac{7}{8}-2x\right)\left(3x+\frac{1}{3}\right)=0\)

\(\hept{\begin{cases}\frac{7}{x}-2x=0\\3x+\frac{1}{3}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{7}{4}\\x=-\frac{1}{9}\end{cases}}}\)

\(f,3x-2x^2=0\)

\(x\left(3-2x\right)=0\)

\(\hept{\begin{cases}x=0\\3-2x=0\end{cases}\Rightarrow\hept{\begin{cases}x=0\\x=\frac{3}{2}\end{cases}}}\)