Cho y = x 3 - 3 x 2 + 2 . Tìm x để: y ' > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
y = 0 ⇔ ( 3 + 2 2 ) x − 2 − 1 = 0 ⇔ ( 3 + 2 2 ) x = 2 + 1 ⇔ ( 2 + 1 ) 2 x = 2 + 1 ⇔ x = 2 + 1 2 + 1 2 ⇔ x = 1 2 + 1 ⇔ x = 2 - 1
Đáp án cần chọn là: D
(S) có tâm \(I\left(m-3;2m;-1\right)\)
Để I thuộc (P) \(\Rightarrow m-3+2m-2.\left(-1\right)-3=0\)
\(\Rightarrow3m-4=0\Rightarrow m=\dfrac{4}{3}\)
\(x^2+y^2\ge\frac{1}{2}\left(x+y\right)^2\)
\(\Leftrightarrow2x^2+2y^2\ge x^2+y^2+2xy\)
\(\Leftrightarrow x^2+y^2-2xy\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\ge0\)( luôn đúng )
Dấu " = " xảy ra <=> x=y
Áp dụng
\(x^2+y^2\ge\frac{1}{2}.\left(x+y\right)^2=\frac{1}{2}.3^2=4,5\)
Dấu " = " xảy ra <=> x=y=1,5
\(y=\dfrac{1}{3}\left(m-1\right)x^3-\left(m-1\right)x^2+\left(m+3\right)x-2\)
\(y'=\)\(x^2\left(m-1\right)-2x\left(m-1\right)+m+3\)
a)\(y'=0\)\(\Leftrightarrow x^2\left(m-1\right)-2x\left(m-1\right)+m+3=0\)
Xét m=1 => pt tt: 3=0 (vô lí)
=> \(m\ne1\)
Để y'=0 có hai nghiệm pb cùng dấu
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta>0\\x_1x_2>0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}-16m+16>0\\\dfrac{m+3}{m-1}>0\end{matrix}\right.\)\(\Rightarrow m< -3\)
b)y'=0 có hai nghiệm \(\Leftrightarrow\Delta\ge0\) \(\Leftrightarrow m\le-3\)
Theo viet có: \(\left\{{}\begin{matrix}x_1+x_2=\dfrac{2\left(m-1\right)}{m-1}=2\\x_1x_2=\dfrac{m+3}{m-1}\end{matrix}\right.\)
Có x12+x22=4
\(\Leftrightarrow\left(x_1+x_2\right)^2-2x_1x_2=4\)
\(\Leftrightarrow\)\(4-\dfrac{2\left(m+3\right)}{m-1}=4\)
\(\Leftrightarrow m=-3\) (tm)
Vậy m=-3
(đúng không ạ?)
y² + 2(x² + 1) = 2xy - 2y
<=> 2y² + 4(x² + 1) = 4xy - 4y
<=> 2y² + 4x² + 4 - 4xy + 4y = 0
<=> (4x² - 4xy + y²) + (y² + 4y + 4) = 0
<=> [(2x)² - 2.2x.y + y²] + (y² + 2.y.2 + 4) = 0
<=> (2x - y)² + (y + 2)² = 0
(2x - y)² ≥ 0
(y + 2)² ≥ 0
=> (2x - y)² + (y + 2)² ≥ 0
Dấu "=" khi (2x - y)² = 0 và (y + 2)² = 0
<=> 2x - y = 0 và y + 2 = 0
<=> 2x = y và y = - 2
<=> x = - 1 và y = - 2
Để thỏa mãn phương trình thì dấu "=" xảy ra
Vậy phương trình có nghiệm x = - 1 và y = - 2
1, PT\(\Leftrightarrow\hept{\begin{cases}x-2=0\\y+3=0\end{cases}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=-3\end{cases}}\)
2, PT\(\Leftrightarrow\hept{\begin{cases}x+1=0\\y-1=0\end{cases}\Leftrightarrow}\)\(\hept{\begin{cases}x=-1\\y=1\end{cases}}\)
y = x3 – 3x2 + 2.
⇒ y’ = (x3 – 3x2 + 2)’
= (x3)’ – (3x2)’ + (2)’
= 3x2 – 3.2x + 0
= 3x2 – 6x.
y’ > 0
⇔ 3x2 – 6x > 0
⇔ 3x(x – 2) > 0
⇔ x < 0 hoặc x > 2.