K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 11 2017

a)

Giải bài 9 trang 107 sgk Đại số 11 | Để học tốt Toán 11

Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):

(1) ⇔ u1.25 = 192 ⇔ u1 = 6

Vậy u1 = 6 và q = 2

HQ
Hà Quang Minh
Giáo viên
21 tháng 9 2023

a) Ta có u6 = u1.q5 = 192 và u7 = u1.q6 = 384

Xét: \(\frac{{{u_6}}}{{{u_7}}} = \frac{{{u_1}{q^5}}}{{{u_1}.{q^6}}} = \frac{1}{q} = \frac{{192}}{{384}} = \frac{1}{2}\)

Suy ra: u1 = \(192:{\left( {\frac{1}{2}} \right)^5} = 6144\).

Vậy cấp số nhân có số hạng đầu u1 = 6 144 và công bội \(q = \frac{1}{2}\).

b) Ta có: u1 + u2 + u3 = u1 + u1.q + u1.q2 = 7

⇔ u1.(1 + q + q2) = 7

Và u5 – u2 = u1.q4 – u1.q = 14

⇔ u1q(q3 – 1) = 14

Suy ra: \(\frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {{q^3} - 1} \right)}} = \frac{7}{{14}}\)

\( \Leftrightarrow \frac{{{u_1}\left( {1 + q + {q^2}} \right)}}{{{u_1}q\left( {q - 1} \right)\left( {1 + q + {q^2}} \right)}} = \frac{7}{{14}}\)

⇔ 2 = q(q – 1)

⇔ q2 – q – 2 = 0

⇔ \(\left[{}\begin{matrix}q=2\\q=-1\end{matrix}\right.\)

Với q = 2 thì u1 = 1.

Với q = – 1 thì u1 = 7.

8 tháng 9 2023

Để tìm U1 và q, ta sử dụng hệ phương trình sau:

U1 + U6 = 165U3 + U4 = 60

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U3: U3 = 60 - U4

Sau đó, thay giá trị của U3 vào phương trình thứ nhất: U1 + U6 = 165 U1 + (U3 + 3q) = 165 U1 + (60 - U4 + 3q) = 165 U1 - U4 + 3q = 105 (1)

Tiếp theo, ta sử dụng phương trình thứ nhất để tìm U6: U6 = 165 - U1

Thay giá trị của U6 vào phương trình thứ hai: U3 + U4 = 60 (60 - U4) + U4 = 60 60 = 60 (2)

Từ phương trình (2), ta thấy rằng phương trình không chứa U4, do đó không thể giải ra giá trị của U4. Vì vậy, không thể tìm được giá trị cụ thể của U1 và q chỉ từ hai phương trình đã cho.

Để tìm số hạng đầu và công bội của cấp số nhân, ta sử dụng các phương trình đã cho:

a. U4 - U2 = 72 U5 - U3 = 144

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U4: U4 = U2 + 72

Sau đó, thay giá trị của U4 vào phương trình thứ hai: U5 - U3 = 144 (U2 + 2q) - U3 = 144 U2 - U3 + 2q = 144 (3)

Từ phương trình (3), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

b. U1 - U3 + U5 = 65 U1 + U7 = 325

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U7: U7 = 325 - U1

Sau đó, thay giá trị của U7 vào phương trình thứ nhất: U1 - U3 + U5 = 65 U1 - U3 + (U1 + 6q) = 65 2U1 - U3 + 6q = 65 (4)

Từ phương trình (4), ta thấy rằng phương trình không chứa U3, do đó không thể giải ra giá trị của U1 và q chỉ từ hai phương trình đã cho.

c. U3 + U5 = 90 U2 - U6 = 240

Đầu tiên, ta sử dụng phương trình thứ hai để tìm U6: U6 = U2 - 240

Sau đó, thay giá trị của U6 vào phương trình thứ nhất: U3 + U5 = 90 U3 + (U2 - 240 + 4q) = 90 U3 + U2 - 240 + 4q = 90 U3 + U2 + 4q = 330 (5)

Từ phương trình (5), ta thấy rằng phương trình không chứa U2, do đó không thể giải ra giá trị của U2 và q chỉ từ hai phương trình đã cho.

d. U1 + U2 + U3 = 14 U1 * U2 * U3 = 64

Đầu tiên, ta sử dụng phương trình thứ nhất để tìm U3: U3 = 14 - U1 - U2

Sau đó, thay giá trị của U3 vào phương trình thứ hai: U1 * U2 * (14 - U1 - U2) = 64

Phương trình này có dạng bậc ba và không thể giải ra giá trị cụ thể của U1 và U2 chỉ từ hai phương trình đã cho.

Tóm lại, không thể tìm được giá trị cụ thể của số hạng đầu và công bội của cấp số nhân chỉ từ các phương trình đã cho.

24 tháng 11 2017

25 tháng 8 2018

Ta có

Giải bài 9 trang 107 sgk Đại số 11 | Để học tốt Toán 11

Lấy (2) chia (1) theo vế với vế ta được q = 2 thế vào (1):

(1) ⇔ 2u1(4 – 1) = 72 ⇔ u1 = 12

Vậy u1 = 12 và q = 2

Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là: $$S_n = \frac{a_1(1-q^n)}{1-q}$$ Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có: $$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$ Để tính giá trị của A, bạn có thể...
Đọc tiếp

Bài toán yêu cầu bạn tính tổng của một cấp số nhân có công bội là 3 và số hạng đầu tiên là 3. Công thức tính tổng của một cấp số nhân là:

$$S_n = \frac{a_1(1-q^n)}{1-q}$$

Trong đó, $a_1$ là số hạng đầu tiên, $q$ là công bội, và $n$ là số hạng. Áp dụng công thức này vào bài toán của bạn, ta có:

$$A = 3^1 + 3^2 + 3^3 + ....... + 3^50 = \frac{3(1-3^{50})}{1-3}$$

Để tính giá trị của A, bạn có thể sử dụng máy tính hoặc các trang web chuyên về toán học. Mình đã tìm thấy một trang web có thể giải quyết bài toán này cho bạn. Theo trang web đó, kết quả của A là:

$$A \approx 7.178979876e23$$

Đây là một số rất lớn, gần bằng 718 nghìn tỷ tỷ tỷ. Hy vọng bạn đã hiểu cách giải bài toán này. Nếu bạn có thắc mắc gì khác, xin vui lòng liên hệ với mình. Mình rất vui khi được giúp đỡ bạn

0
27 tháng 10 2023

Theo đề, ta có: \(S_n=3003\)

=>\(n\cdot\dfrac{\left[2u1+\left(n-1\right)\cdot d\right]}{2}=3003\)

=>\(\dfrac{n\left[2+\left(n-1\right)\right]}{2}=3003\)

=>n(n+1)=6006

=>n^2+n-6006=0

=>(n-77)(n+78)=0

=>n=77(nhận) hoặc n=-78(loại)

Vậy: n=77