K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 4 2018

Ta có: BE, BC là hai đường xiên vẽ từ B đến đường AC.

BA ⏊ AC tại A nên A là hình chiếu của B trên AC

 

⇒ AE, AC lần lượt là hình chiếu của BE, BC trên AC.

Trong hình vẽ E nằm giữa A và C ⇒ AE < AC ⇒ BE < BC (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).

19 tháng 4 2017

a) Trong hình vẽ BE < BC là hai đường xiên vẽ từ B đến đường AC và AE, AC là hai hình chiếu của chúng vì AE < AC nên BE < BC

b) EB và ED là hai đường xiên vẽ từ E đến AB

AB và AD là hai hình chiếu của chúng

Vì AD < AB nên DE < BE

Ta có: BE < BC và DE < BE nên DE < BC

24 tháng 4 2017

Trong hình vẽ D nằm giữa A và B ⇒ AD < AB

Ta có: ED, EB là hai đường xiên vẽ từ E đến đường AB

EA ⏊ AB tại A nên A là hình chiếu của E trên AB.

⇒ AD, AB lần lượt là hình chiếu của ED, EB trên AB

Trong hình vẽ D nằm giữa A và B ⇒ AD < AB nên ED < EB hay DE < BE (đường xiên nào có hình chiếu lớn hơn thì lớn hơn).

Kết hợp với kết quả câu a suy ra DE < BE < BC ⇒ DE < BC.

12 tháng 3 2017

AB \(\perp\) AC (gt)

Có E nằm giữa A và C

=> AE<AC

=> BE<BC ( qh giữa đg xiên và hình chiếu ) (1)

Có D nằm giữa A và B

=> AD<AB

=> DE<BE ( qh giữa đg xiên và hc ) (2)

Từ (1) và (2) => DE<BC

12 tháng 3 2017

a) \(\widehat{BEC}\) là góc ngoài của tam giác vuông ABE nên \(\widehat{BEC}\) là góc tù.
Do đó, tam giác BEC có BE < BC (BE là cạnh đối diện với góc tù) (1)

b) Ta có: AD, AB lần lượt là hình chiếu của ED, EB lên đường thẳng AB. Vì AD < AB => ED < EB (2)
Từ (1) và (2) ta có: DE < BC

31 tháng 1 2021

giúp mình vs, mình đang cần gấp ạ !!!

24 tháng 1 2020

Theo giả thiết ta có: \(CF\perp AM\)nên \(\Delta MCF\)vuông tại F

Suy ra CF < MC (cạnh góc vuông bé hơn cạnh huyền) (1)

Tương tự ta có: BE < BM (2)

Từ (1) và (2) suy ra \(BE+CF< BM+MC=BC\)

Vậy \(BE+CF< BC\left(đpcm\right)\)

26 tháng 3 2021

ta có:

tam giác BEM vuông tại E \(\Rightarrow\) BM là cạnh lớn nhất trong tam giác BEM

\(\Rightarrow\):BM>BE

ta có: tam giác MFC vuông tại F suy ra MC là cạnh lớn nhất trong tam giác FMC

\(\Rightarrow\) CM>CF

từ 2 điều trên \(\Leftrightarrow\)

BM+CM>CF+BE

BC>CF+BE

1 tháng 11 2017

Để học tốt Toán 8 | Giải toán lớp 8

Hình thang ABCD có đáy AB, CD ⇒ AB // CD ⇒ ∠A2 = ∠C1 ̂ (hai góc so le trong)

Lại có: AD // BC ⇒ ∠A1 = ∠C2 (hai góc so le trong)

Xét ΔABC và ΔCDA có:

∠A2 = ∠C1 (cmt)

AC chung

∠A1 = ∠C2 (cmt)

⇒ ΔABC = ΔCDA (g.c.g)

⇒ AD = BC, AB = CD (các cặp cạnh tương ứng)

b)

Để học tốt Toán 8 | Giải toán lớp 8

Xét ΔABC và ΔCDA có:

AC chung

∠A2 = ∠C1 (cmt)

AB = CD

⇒ ΔABC = ΔCDA (c.g.c)

⇒ AD = BC (hai cạnh tương ứng)

∠A1 = ∠C2 (hai góc tương ứng) ⇒ AD // BC (hai góc so le trong bằng nhau)