K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 4 2017

a, Chứng minh ∆MEF:∆MOA

b, ∆MEF:∆MOA mà AO=OM => ME=EF

c, Chứng minh F là trực tâm của ∆SAB, AI là đường cao, chứng minh A,I,F thẳng hàng

d, FA.SM = 2 R 2

e,  S M H O = 1 2 OH.MH ≤  1 2 . 1 2 M O 2 = 1 4 R 2

=> M ở chính giữa cung AC

3 tháng 3 2018

14 tháng 6 2019

 Đáp án D

29 tháng 10 2023

 a) Tam giác ABM vuông tại A có đường cao AC nên \(BC.BM=BA^2\). CMTT, \(BD.BN=BA^2\) nên \(BC.BM=BD.BN\Leftrightarrow\dfrac{BM}{BD}=\dfrac{BN}{BC}\). Từ đây dễ dàng suy ra \(\Delta BNM~\Delta BCD\left(c.g.c\right)\) (đpcm)

 b) Ta có OQ//BN, OP//BM, mà \(MB\perp NB\) nên suy ra \(OP\perp BN\), từ đó O là trực tâm tam giác BPN.\(\Rightarrow ON\perp BP\)

 Lại có \(QH\perp BP\) nên QH//ON.

Tam giác AON có Q là trung điểm AN, QH//ON nên H là trung điểm OA \(\Rightarrow AH=\dfrac{OA}{2}=\dfrac{R}{2}\) không đổi.

a: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp

b: MP//OC(cùng vuông góc AB)

=>góc MCO=góc NMP

góc NMP=góc MNO

=>góc MNO=góc MCO

=>góc MNO=góc ODN

=>CM//OP

Xét tứ giác CMPO có

CM//PO

CO//PM

=>CMPO là hình bình hành

c: Xét ΔCOM vuông tại O và ΔCND vuông tại N có

góc OCM chung

=>ΔCOM đồng dạng với ΔCND

=>CO/CN=CM/CD

=>CN*CM=CO*CD=2R^2 ko phụ thuộc vào vị trí của M

1 tháng 8 2023

a

Theo giả thiết có:

`AB=AC`

`OB=OC`

=> AO là đường trung trực của đoạn BC

=> AO⊥BC

b

Ta có:

`OB=OC=R`

Gọi điểm giao nhau của BC và OA là H có:

`HB=HC`

Từ trên suy ra: HO là đường trung bình của ΔCDB

=> HO//BD

=> OA//BD (H nằm trên đoạn OA)

 

1 tháng 8 2023

c

AB là tiếp tuyến đường tròn.

=> OB⊥AB

Lại có: BH⊥OA (cmt)

Áp dụng hệ thức lượng vào tam giác OAB vuông tại B, đường cao BH có:

\(\dfrac{1}{BH^2}=\dfrac{1}{AB^2}+\dfrac{1}{OB^2}\\ \Leftrightarrow\dfrac{1}{BH^2}=\dfrac{1}{8^2}+\dfrac{1}{6^2}\\ \Rightarrow BH=\sqrt{1:\left(\dfrac{1}{8^2}+\dfrac{1}{6^2}\right)}=\dfrac{24}{5}=4,8\left(cm\right)\)

\(BC=2BH\left(BH=HC\right)\\ \Rightarrow BC=2.4,8=9,6\left(cm\right)\)

1: góc OMP=góc ONP=90 độ

=>OMNP nội tiếp