K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2018

Cách 1:  x 2   −    9 x   +   20 = 0

∆ =81-80=1>0 nên phương trình có hai nghiệm phân biệt  x 1 = 9 + 1 2 = 5 ; x 2 = 9 − 1 2 = 4

Vậy phương trình có tập nghiệm S={4;5}

 Cách 2:

x 2 − 9 x + 20 = 0 = 0 ⇔ x 2 − 5 x − 4 x + 20 = 0 ⇔ ( x − 5 ) ( x − 4 ) = 0 ⇔ x − 5 = 0 x − 4 = 0 ⇔ x = 5 x = 4

Vậy phương trình có tập nghiệm S={4;5}

18 tháng 5 2021

3(2x+y)-2(3x-2y)=3.19-11.2

6x+3y-6x+4y=57-22

7y=35

y=5

thay vào :

2x+y=19

2x+5=19

2x=14

x=7

2/ x2+21x-1x-21=0

x(x+21)-1(x+21)=0

(x+21)(x-1)=0

TH1 x+21=0

x=-21

TH2 x-1=0

x=1

vậy x = {-21} ; {1}

3/ x4-16x2-4x2+64=0

x2(x2-16)-4(x2-16)=0

(x2-16)-(x2-4)=0

TH1 x2-16=0

x2=16

<=>x=4;-4

TH2 x2-4=0

x2=4

x=2;-2

18 tháng 5 2021

Bài 1 : 

\(\hept{\begin{cases}2x+y=19\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}4x+2y=38\\3x-2y=11\end{cases}\Leftrightarrow\hept{\begin{cases}7x=49\\2x+y=19\end{cases}}}}\)

\(\Leftrightarrow\hept{\begin{cases}x=7\\2x+y=19\end{cases}}\)Thay vào x = 7 vào pt 2 ta được : 

\(14+y=19\Leftrightarrow y=5\)Vậy hệ pt có một nghiệm ( x ; y ) = ( 7 ; 5 )

Bài 2 : 

\(x^2+20x-21=0\)

\(\Delta=400-4\left(-21\right)=400+84=484\)

\(x_1=\frac{-20-22}{2}=-24;x_2=\frac{-20+22}{2}=1\)

Bài 3 : Đặt \(x^2=t\left(t\ge0\right)\)

\(t^2-20t+64=0\)

\(\Delta=400+4.64=656\)

\(t_1=\frac{20+4\sqrt{41}}{2}\left(tm\right);t_2=\frac{20-4\sqrt{41}}{2}\left(ktm\right)\)

Theo cách đặt : \(x^2=\frac{20+4\sqrt{41}}{2}\Rightarrow x=\sqrt{\frac{20+4\sqrt{41}}{2}}=\frac{\sqrt{20\sqrt{2}+4\sqrt{82}}}{2}\)

\(\text{ 2x+6=0 }\)

\(\Leftrightarrow2x=-6\)

\(\Leftrightarrow x=-3\)

\(S=\left\{-3\right\}\)

\(\text{3x-9=0 }\)

\(\Leftrightarrow3x=9\)

\(\Leftrightarrow x=3\)

\(S=\left\{3\right\}\)

\(\text{4x+20=0}\)

\(\Leftrightarrow4x=-20\)

\(\Leftrightarrow x=-5\)

\(S=\left\{-5\right\}\)

\(\text{4x+1=6-x}\)

\(\Leftrightarrow4x+1-6-x=0\)

\(\Leftrightarrow3x-5=0\)

\(\Leftrightarrow3x=5\)

\(\Leftrightarrow x=\dfrac{5}{3}\)

\(S=\left\{\dfrac{5}{3}\right\}\)

a: 2x+6=0

=>2x=-6

=>x=-3

b: 3x-9=0

=>3x=9

=>x=3

c: 4x+20=0

=>x+5=0

=>x=-5

d: 4x+1=6-x

=>5x=5

=>x=1

24 tháng 2 2021

`a,(x+3)(x^2+2021)=0`

`x^2+2021>=2021>0`

`=>x+3=0`

`=>x=-3`

`2,x(x-3)+3(x-3)=0`

`=>(x-3)(x+3)=0`

`=>x=+-3`

`b,x^2-9+(x+3)(3-2x)=0`

`=>(x-3)(x+3)+(x+3)(3-2x)=0`

`=>(x+3)(-x)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$

`d,3x^2+3x=0`

`=>3x(x+1)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$

`e,x^2-4x+4=4`

`=>x^2-4x=0`

`=>x(x-4)=0`

`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$

1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)

=> S={-3}

 

27 tháng 2 2020

a) ĐK: \(x\ge-15\)

\(8x^2+16x-20-\sqrt{x+15}=0\)

<=> \(8x^2+16x-20=\sqrt{x+15}\)

=> \(64x^4+256x^2+400+256x^3-640x-320x^2=x+15\)

<=> \(64x^4+256x^3-64x^2-641x+385=0\)

<=> \(4x^2\left(16x^2+36x-35\right)+7x\left(16x^2+36x-35\right)-11\left(16x^2-36x-35\right)=0\)

<=> \(\left(16x^2+36x-35\right)\left(4x^2+7x-11\right)=0\)

<=> \(\orbr{\begin{cases}16x^2+36x-35=0\\4x^2+7x-11=0\end{cases}}\)

+) TH1: \(16x^2+36x-35=0\Leftrightarrow x=\frac{-9\pm\sqrt{221}}{8}\)( tmđk)

+) TH2: \(4x^2+7x-11=0\Leftrightarrow\orbr{\begin{cases}x=1\\x=-\frac{11}{4}\end{cases}}\)(tmđk)

THử từng nghiệm vào bài toán ban đầu ta chỉ 2 nghiệm x = 1 và \(x=\frac{-9-\sqrt{221}}{8}\)là đúng

Vậy phương trình có hai nghiệm:....

23 tháng 4 2023

\(\left(x-2\right)^2\left(x-9\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)^2=0\\x-9=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\left(x-2\right)\left(x-2\right)=0\\x=9\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\\x=9\end{matrix}\right.\)

23 tháng 4 2023

\(\left(x-2\right)^2\left(x-9\right)=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-2\right)\left(x-9\right)=0\)

\(\Leftrightarrow x-2=0hoặcx-9=0\)

\(\Leftrightarrow x=2hoặcx=9\)

Vậy phương trình có nghiệm là:\(S=\left\{2;9\right\}\)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 9:

Không, vì $x+2=0$ có nghiệm duy nhất $x=-2$ còn $\frac{x}{x+2}=0$ ngay từ đầu đkxđ đã là $x\neq -2$ (cả 2 pt không có cùng tập nghiệm)

AH
Akai Haruma
Giáo viên
6 tháng 1 2023

Bài 8:

a. Khi $m=2$ thì pt trở thành:

$(2^2-9)x-3=2$

$\Leftrightarrow -5x-3=2$

$\Leftrightarrow -5x=5$

$\Leftrightarrow x=-1$ 

b.

Khi $m=3$ thì pt trở thành:

$(3^2-9)x-3=3$

$\Leftrightarrow 0x-3=3$

$\Leftrightarrow 0=6$ (vô lý)

c. Khi $m=3$ thì pt trở thành:

$[(-3)^2-9]x-3=-3$

$\Leftrightarrow 0x-3=-3$ (luôn đúng với mọi $x\in\mathbb{R}$)

Vậy pt vô số nghiệm thực.

7 tháng 8 2021

a, ĐK: \(x\le-1,x\ge3\)

\(pt\Leftrightarrow2\left(x^2-2x-3\right)+\sqrt{x^2-2x-3}-3=0\)

\(\Leftrightarrow\left(2\sqrt{x^2-2x-3}+3\right).\left(\sqrt{x^2-2x-3}-1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{x^2-2x-3}=-\dfrac{3}{2}\left(l\right)\\\sqrt{x^2-2x-3}=1\end{matrix}\right.\)

\(\Leftrightarrow x^2-2x-3=1\)

\(\Leftrightarrow x^2-2x-4=0\)

\(\Leftrightarrow x=1\pm\sqrt{5}\left(tm\right)\)

7 tháng 8 2021

b, ĐK: \(-2\le x\le2\)

Đặt \(\sqrt{2+x}-2\sqrt{2-x}=t\Rightarrow t^2=10-3x-4\sqrt{4-x^2}\)

Khi đó phương trình tương đương:

\(3t-t^2=0\)

\(\Leftrightarrow\left[{}\begin{matrix}t=0\\t=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}\sqrt{2+x}-2\sqrt{2-x}=0\\\sqrt{2+x}-2\sqrt{2-x}=3\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}2+x=8-4x\\2+x=17-4x+12\sqrt{2-x}\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{5}\left(tm\right)\\5x-15=12\sqrt{2-x}\left(1\right)\end{matrix}\right.\)

Vì \(-2\le x\le2\Rightarrow5x-15< 0\Rightarrow\left(1\right)\) vô nghiệm

Vậy phương trình đã cho có nghiệm \(x=\dfrac{6}{5}\)