Tính 50C biết C = \(\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-....-\frac{1}{2.1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{2.1}\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(\Rightarrow C=\frac{1}{100}-1+\frac{1}{100}\)
\(\Rightarrow C=\frac{1}{50}-1\)
\(\Rightarrow50C=\left(\frac{1}{50}-1\right)50\)
\(\Rightarrow50C=1-50\)
\(\Rightarrow50C=-49\)
Vậy \(50C=-49\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
=> 50C = \(50.\left(-\frac{49}{50}\right)=-49\)
\(C=\frac{1}{100}-\left(\frac{1}{100\cdot99}+\frac{1}{99\cdot98}+\cdot\cdot\cdot+\frac{1}{2\cdot1}\right)\)
\(C=\frac{1}{100}-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\cdot\cdot\cdot+\frac{1}{98\cdot99}+\frac{1}{99\cdot100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\cdot\cdot\cdot+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(\frac{100}{100}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\frac{99}{100}\)
\(C=\frac{-98}{100}\)
\(Khi\) đó \(50C=\frac{-98}{100}\cdot50\)
\(50C=-49\)
tick cho mình nha
C= 1/100-(1/100.99+.....+1/3.2+1/2.1)
Ta lần lượt có :
1/2.1=1-1/2
1/2.3=1/2-1/3
................
nên C= 1/100-(1-1/100)=1/100-99/100 =-49/50
nên 50C= -49
C = \(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(=\frac{1}{100}-\frac{99}{100}=-\frac{49}{50}\)
\(\Rightarrow50C=50.\left(-\frac{49}{50}\right)=-49\)
mk moi giai violympic =50 sao đó
mk nghi z
mk thi co 10 cau mk cung giai cau do nhung co dc 90 diem o
ma mk nghi chac cau do dung
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+....+\frac{1}{98.99}+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{98}-\frac{1}{99}+\frac{1}{99}-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-1+\frac{1}{100}\)
\(C=\frac{-49}{50}\)
C = 1/100 - 1/100.99 - 1/99.98 - 1/98.97 - ... - 1/3.2 - 1/2.1
C = 1/100 - (1/100.99 + 1/99.98 + 1/98.97 + ... + 1/3.2 + 1/2.1)
C = 1/100 - (1/1.2 + 1/2.3 + ... + 1/98.99 + 1/99.100)
C = 1/100 - (1 - 1/2 + 1/2 - 1/3 + ... + 1/98 - 1/99 + 1/99 - 1/100)
C = 1/100 - (1 - 1/100)
C = 1/100 - 99/100
C = -98/100 = -49/50
C=\(\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\right)=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=\frac{-98}{100}\)
Suy ra 50C=-196
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(=\frac{1}{100}+\frac{1}{100}-\frac{1}{99}+\frac{1}{99}-\frac{1}{98}+\frac{1}{98}-\frac{1}{97}-...+\frac{1}{3}-\frac{1}{2}+\frac{1}{2}-1\)
\(=\frac{1}{100}+\frac{1}{100}-1\)
\(=-\frac{49}{50}\)
\(\Rightarrow50C=50.\frac{-49}{50}=-49\)
Ta có: \(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-...-\frac{1}{3.2}-\frac{1}{2.1}\)
\(\Rightarrow C=\frac{1}{100}-\left(\frac{1}{99}-\frac{1}{100}\right)-\left(\frac{1}{98}-\frac{1}{99}\right)-...-\left(\frac{1}{2}-\frac{1}{3}\right)-\left(1-\frac{1}{2}\right)\)
\(\Rightarrow C=\frac{1}{100}-\frac{1}{99}+\frac{1}{100}-\frac{1}{98}+\frac{1}{99}-...-\frac{1}{2}+\frac{1}{3}-1+\frac{1}{2}\)
\(\Rightarrow C=\frac{1}{100}+\frac{1}{100}-1\)
\(\Rightarrow C=\frac{2}{100}-\frac{100}{100}\)
\(\Rightarrow C=-\frac{88}{100}=-\frac{22}{25}\)
Vậy \(C=-\frac{22}{25}\)
Chuk bạn hok tốt!
\(C=\frac{1}{100}-\frac{1}{100.99}-\frac{1}{99.98}-....-\frac{1}{2.1}\)
\(C=\frac{1}{100}-\left(\frac{1}{1.2}+\frac{1}{2.3}+....+\frac{1}{99.100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-....-\frac{1}{100}\right)\)
\(C=\frac{1}{100}-\left(1-\frac{1}{100}\right)=\frac{1}{100}-\frac{99}{100}=-\frac{-49}{50}\)
\(50C=-\frac{49}{50}.50=-49\)
Đáp số: -49
kết quả có phải 50 k ?