Cho bảng số liệu.
Tính phương sai và độ lệch chuẩn của Bình là:
A. 1,96 và 1,39
B. 1,92 và 1,38
C. 1,3 và 1,69
D. 1,38 và 1,13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Dãy các số liệu chiều cao của các học sinh nam cho ở bảng 5 có
x 1 ≈ 163 ( c m ) ; s 1 2 ≈ 134 , 3 ; s 1 ≈ 11 , 59
Dãy các số liệu chiều cao của các học sinh nữ cho ở bảng 5 có
x 2 ≈ 159 , 5 ( c m ) ; s 2 2 ≈ 148 ; s 2 ≈ 12 , 17
Điểm số của xạ thủ A có:
x ≈ 8 , 3 đ i ể m , s 1 2 ≈ 1 , 6 ; s 1 ≈ 1 , 27 .
Điểm số của xạ thủ B có
y ≈ 8 , 4 đ i ể m , s 2 2 ≈ 1 , 77 ; s 2 ≈ 1 , 27 .
Mẫu 1:
+) Số trung bình: \(\overline x = \frac{{0,1 + 0,3 + 0,5 + 0,5 + 0,3 + 0,7}}{6} = 0,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {0,{1^2} + 0,{3^2} + 0,{5^2} + 0,{5^2} + 0,{3^2} + 0,{7^2}} \right) - 0,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 2:
+) Số trung bình: \(\overline x = \frac{{1,1 + 1,3 + 1,5 + 1,5 + 1,3 + 1,7}}{6} = 1,4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {1,{1^2} + 1,{3^2} + 1,{5^2} + 1,{5^2} + 1,{3^2} + 1,{7^2}} \right) - 1,{4^2} \approx 0,0367\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 0,19\)
Mẫu 3:
+) Số trung bình: \(\overline x = \frac{{1 + 3 + 5 + 5 + 3 + 7}}{6} = 4\)
+) Phương sai \({S^2} = \frac{1}{6}\left( {{1^2} + {3^2} + {5^2} + {5^2} + {3^2} + {7^2}} \right) - {4^2} \approx 3,67\)
+) Độ lệch chuẩn \(S = \sqrt {{S^2}} \approx 1,9\)
Kết luận:
Số liệu ở mẫu 2 hơn số liệu ở mẫu 1 là 1 đơn vị, số trung bình của mẫu 2 hơn số trung bình mẫu 1 là 1 đơn vị, còn phương sai và độ lệch chuẩn là như nhau.
Số liệu ở mẫu 3 gấp 10 lần số liệu mẫu 1, số trung bình, phương sai và độ lệch chuẩn của mẫu 3 lần lượt gấp 10 lần, 100 lần và 10 lần mẫu 1.
Ví dụ, ta có bảng đo chiều cao của các bạn trong tổ như sau:
160 | 162 | 164 | 165 | 172 | 174 | 177 | 178 | 180 |
a) Sắp xếp mẫu số liệu theo thứ tự không giảm ta được:
160 162 164 165 172 174 177 178 180
Số trung bình cộng của mẫu số liệu trên là:
\(\overline x = \frac{{160\;\; + 162\;\; + 164\;\;\; + \;\;165\;\; + \;172\;\; + \;174\;\; + \;177\; + \;\;178\; + \;180}}{9} = \frac{{1532}}{9}\)
Trung vị của mẫu số liệu trên là: Do mẫu số liệu trên có 9 số liệu ( lẻ ) nên trung vị \({Q_2} = 172\)
Tứ phân vị của mẫu số liệu trên là:
- Trung vị của dãy 160 162 164 165 là: \({Q_1} = 163\)
- Trung vị của dãy 174 177 178 180 là: \({Q_3} = 177,5\)
- Vậy tứ phân vị của mẫu số liệu là: \({Q_1} = 163\), \({Q_2} = 172\), \({Q_3} = 177,5\)
b) Khoảng biến thiên của mẫu số liệu trên là: \(R = {x_{\max }} - {x_{\min }} = 180 - 160 = 20\)
Khoảng tứ phân vị của mẫu số liệu trên là: \({\Delta _Q} = {Q_3} - {Q_1} = 177,5 - 163 = 14,5\)
c) Phương sai của mẫu số liệu trên là:
\({s^2} = \frac{{\left[ {{{\left( {160 - \overline x } \right)}^2} + {{\left( {162 - \overline x } \right)}^2} + ... + {{\left( {180 - \overline x } \right)}^2}} \right]}}{9} \approx 50,84\)
Độ lệch chuẩn của mẫu số liệu trên là: \(s = \sqrt {{s^2}} \approx 7,13\)
c) Trong 60 buổi được khảo sát
Chiếm tỉ lệ thấp nhất (8,33%) là những buổi có dưới 10 người xem
Chiếm tỉ lệ cao nhất (25%) là những buổi có từ 30 người đến dưới 40 người xem
Đa số (78,33%) các buổi có từ 10 người đến dưới 50 người xem
d) \(\overline{x}\approx32\) người; \(s^2\approx219,7;s=15\) người
a) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[630;635) | 1 | 4,2% |
[635;640) | 2 | 8,3% |
[640;645) | 3 | 12,5% |
[645;650) | 6 | 25% |
[650;655] | 12 | 50% |
Cộng | 24 | 100% |
b) Bảng phân bố tần số và tần suất:
Nhóm cá thứ I | Tần số | Tần suất |
---|---|---|
[638;642) | 5 | 18,52% |
[642;646) | 9 | 33,33% |
[646;650) | 1 | 3,7% |
[650;654) | 12 | 44,45% |
Cộng | 27 | 100% |
c) Biểu đồ tần suất hình cột:
- Đường gấp khúc tần suất
d) Biểu đồ tần số
- Đường gấp khúc tần số
e) * Xét bảng phân bố ở câu a)
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
* Xét bảng phân bố ở câu b):
- Số trung bình:
- Phương sai:
- Độ lệch chuẩn:
Nhận thấy s2 < s1 nên nhóm cá thứ hai có khối lượng đồng đều hơn.
Chọn B.
Phương sai và độ lệch chuẩn của Bình là:
Ta có
nên