cho tam giác ABC có độ dài 3 cạnh bằng a,b,c, diện tích bằng S. Chứng minh rằng 6S<=a^2+b^2+c^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
a<b+ca<b+c
--> a+a<a+b+ca+a<a+b+c
--> 2a<22a<2
--> a<1a<1
Tương tự ta có : b<1,c<1b<1,c<1
Suy ra: (1−a)(1−b)(1−c)>0(1−a)(1−b)(1−c)>0
⇔ (1–b–a+ab)(1–c)>0(1–b–a+ab)(1–c)>0
⇔ 1–c–b+bc–a+ac+ab–abc>01–c–b+bc–a+ac+ab–abc>0
⇔ 1–(a+b+c)+ab+bc+ca>abc1–(a+b+c)+ab+bc+ca>abc
Nên abc<−1+ab+bc+caabc<−1+ab+bc+ca
⇔ 2abc<−2+2ab+2bc+2ca2abc<−2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2caa2+b2+c2+2abc<a2+b2+c2–2+2ab+2bc+2ca
⇔ a2+b2+c2+2abc<(a+b+c)2−2a2+b2+c2+2abc<(a+b+c)2−2
⇔ a2+b2+c2+2abc<22−2a2+b2+c2+2abc<22−2 , (do a+b=c=2a+b=c=2 )
⇔ dpcm
Ta cần chưng minh:
\(6\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}\le a^2+b^2+c^2\)
\(\Leftrightarrow6\sqrt{\dfrac{\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{16}}\le a^2+b^2+c^2\)
\(\Leftrightarrow\dfrac{9\left(a+b+c\right)\left(a+b-c\right)\left(a+c-b\right)\left(b+c-a\right)}{4}\le\left(a^2+b^2+c^2\right)^2\)
\(\Leftrightarrow13\left(a^4+b^4+c^4\right)-10\left(a^2b^2+b^2c^2+c^2a^2\right)\ge0\)
\(\Leftrightarrow3\left(a^4+b^4+c^4\right)+10\left(a^4+b^4+c^4-a^2b^2-b^2c^2-c^2a^2\right)\ge0\)đung
Dâu = xảy ra khi \(a=b=c=0\) mà cai này coc phải tam giac nên đề bài co vân đề.
a = 60cm
p = 160/2 = 80cm
p = \(\dfrac{a+b+c}{2}\) (1) => \(\dfrac{2p-a}{2}\) = \(\dfrac{b+c}{2}\)
Vì a, p là 1 hằng số nên để S đạt GTLN <=> (p-b) và (p-c) đạt GTLN
Áp dụng bđt Cosin, ta có:
\(\sqrt{\left(p-b\right)\left(p-c\right)}\) <= \(\dfrac{p-b+p-c}{2}\) = \(\dfrac{2p-b-c}{2}\)
=> \(\dfrac{S}{\sqrt{p\left(p-a\right)}}\) <= \(p-\dfrac{b+c}{2}\) = \(p-\dfrac{2p-a}{2}\) = \(\dfrac{a}{2}\)
=> 2S <= \(a\sqrt{p\left(p-a\right)}\) = \(60\sqrt{80.\left(80-60\right)}\) = 2400
=> S <= 1200 (\(cm^2\))
Dấu "=" xảy ra
<=> \(p-b\) = \(p-c\)
<=> b = c
Thay b = c vào (1), ta được:
p = \(\dfrac{a+2b}{2}\) => 80 = \(\dfrac{60+2b}{2}\) => b = c = 50 (cm)
=> đpcm
S = a.b/2
Xét : a^2+b^2/4 - ab/2 = a^2+b^2-2ab/4 = (a-b)^2/4 >= 0
=> ab/2 < = a^2+b^2/4
=> S < = a^2+b^2/4
=> đpcm
Tk mk nha
Bạn dưới Nguyễn Anh Quân nhầm rồi ; đây là tam giác thường chứ ko phải tam giác vuông
\(S_1=\dfrac{1}{2}\cdot BA\cdot BC\cdot sinB\)
\(S_2=\dfrac{1}{2}\cdot3\cdot BC\cdot\dfrac{1}{2}\cdot AB\cdot sinC=\dfrac{3}{4}\cdot BC\cdot AB\cdot sinC\)
=>\(\dfrac{S_2}{S_1}=\dfrac{3}{4}:\dfrac{1}{2}=\dfrac{3}{2}\)
=>Diện tích mới tạo thành bằng 3/2 lần diện tích cũ