K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

-8 bạn à 

có cần giải chi tiết ko

 Nếu thấy bài làm của mình đúng thì tick nha bạn.Cảm ơn bạn nhiều.

30 tháng 6 2017

\(\frac{x^2-4x-4}{x^2-4x+5}=\frac{x^2-4x+5}{x^2-4x+5}-\frac{9}{x^2-4x+5}=1-\frac{9}{\left(x^2-4x+4\right)+1}=1-\frac{9}{\left(x-2\right)^2+1}\)

Vì \(\left(x-2\right)^2\ge0\Rightarrow\left(x-2\right)^2+1\ge1\Rightarrow\frac{9}{\left(x-2\right)^2+1}\le9\Rightarrow1-\frac{9}{\left(x-2\right)^2+1}\ge-8\)

Dấu "=" xảy ra khi (x-2)2=0 => x-2=0 => x=2

Vậy gtnn của biểu thức là -8 khi x=2

đề yêu cầu tìm cả max và min hay chỉ 1 là được?

2 tháng 12 2017

Tấm vải thứ 2 dài là :
                                 85 + 35 = 120 ( m )
Cả 3 tấm vải dài :
                                 85 + 120 + 120 = 325 ( m )
                                                     Đ/S : 325 m

chúc cậu hok tốt @_@

6 tháng 1 2021

a) Ta có: \(Q=-x^2-y^2+4x-4y+2=-\left(x^2+y^2-4x+4y-2\right)\)

\(=-\left(x^2-4x+4+y^2+4y+4\right)+10\)

\(=-\left[\left(x-2\right)^2+\left(y+2\right)^2\right]+10\le10\forall x,y\)

Vậy MaxQ=10 khi x=2, y=-2

b) +Ta có: \(A=-x^2-6x+5=-\left(x^2+6x-5\right)=-\left(x^2+6x+9-14\right)\)

\(=-\left(x^2+6x+9\right)+14=-\left(x+3\right)^2+14\le14\forall x\)

Vậy MaxA=14 khi x=-3

+Ta có: \(B=-4x^2-9y^2-4x+6y+3=-\left(4x^2+9y^2+4x-6y-3\right)\)

\(=-\left(4x^2+4x+1+9y^2-6y+1-5\right)\)

\(=-\left[\left(2x+1\right)^2+\left(3y-1\right)^2\right]+5\le5\forall x,y\)

Vậy MaxB=5 khi x=-1/2, y=1/3

c) Ta có: \(P=x^2+y^2-2x+6y+12=x^2-2x+1+y^2+6y+9+2\)

\(=\left(x-1\right)^2+\left(y+3\right)^2+2\ge2\forall x,y\)

Vậy MinP=2 khi x=1, y=-3

NV
23 tháng 6 2019

\(B=\frac{3}{\left(2x-1\right)^2+4}\le\frac{3}{4}\Rightarrow B_{max}=\frac{3}{4}\) khi \(2x-1=0\Leftrightarrow x=\frac{1}{2}\)

2/ Xem lại đề bài, đề bài này thì ko có max, 12 ở mẫu là dấu + thì may ra làm được

24 tháng 6 2019

ở 12 là dấu cộng bạn ạ

24 tháng 6 2019

1, B=\(\frac{3}{4x^2-4x+5}\)

=\(\frac{3}{\left(4x^2-2.2x+4\right)+5-4}\)

=\(\frac{3}{\left(2x-2\right)^2+1}\le\frac{3}{1}=3\)

Để B=3 thì : (2x-2)2=0

\(\Leftrightarrow2x-2=0\)

\(\Leftrightarrow x=1\)

Vậy Max B =3 \(\Leftrightarrow x=1\)

24 tháng 6 2019

phần b nữa nha

14 tháng 9 2020

Có: \(C=\frac{1}{\sqrt{x^2-4x+5}}\)

\(\Leftrightarrow C=\frac{1}{\sqrt{\left(x-2\right)^2+1}}\)\(\le1\)

Vậy Cmin=1 \(\Leftrightarrow x=2\)

Có: \(B=5-\sqrt{x^2-6x+14}\)

\(\Leftrightarrow B=5-\sqrt{\left(x-3\right)^2+5}\) \(\le5-\sqrt{5}\)

Vậy \(B_{min}=5-\sqrt{5}\Leftrightarrow x=3\)

22 tháng 9 2021

Bài 5:

a) \(A=x^2-4x+9=\left(x^2-4x+4\right)+5=\left(x-2\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=2\)

b) \(B=x^2-x+1=\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minB=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(C=2x^2-6x=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)

\(minC=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\)

Bài 4:

a) \(M=4x-x^2+3=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\)

\(maxM=7\Leftrightarrow x=2\)

b) \(N=x-x^2=-\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{1}{4}=-\left(x-\dfrac{1}{2}\right)^2+\dfrac{1}{4}\le\dfrac{1}{4}\)

\(maxN=\dfrac{1}{4}\Leftrightarrow x=\dfrac{1}{2}\)

c) \(P=2x-2x^2-5=-2\left(x^2-x+\dfrac{1}{4}\right)-\dfrac{9}{2}=-2\left(x-\dfrac{1}{2}\right)^2-\dfrac{9}{2}\le-\dfrac{9}{2}\)

\(maxP=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{1}{2}\)