K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 11 2019

27 tháng 5 2017

Bài 2


[​IMG]

vìtam giác MCK = MAB(c.g.c)\(\Rightarrow\widehat{MCK}=\widehat{MAB}\) 

Vậy nên\(\widehat{MCK}=90^o\) 

Vì tam giác AMK=CMB(c.g.c) \(\Rightarrow\widehat{MKA}=\widehat{MBC}\) 

mà hai góc này ở vị trí so le trong nên\(AK\) //BC

18 tháng 8 2016

a) Vì ΔMCK=ΔMAB(c−g−c)ΔMCK=ΔMAB(c−g−c) nên :
⇒ˆMCK=ˆMAB⇒MCK^=MAB^
Vậy ˆMCK=90oMCK^=90o
Hay : CK⊥ACCK⊥AC

b) Vì ΔAMK=ΔCMB(c−g−c)ΔAMK=ΔCMB(c−g−c) nên :
⇒ˆMKA=ˆMBC⇒MKA^=MBC^
Mà 2 góc này ở vị trí so le trong nên :
AK//BC

1 tháng 1 2016

A B C M 1 2 3 4 K

a)Xét tam giác BAM và tam giác KCM có :

         M1 = M3 ( Đối đỉnh )

            AM = MC ( gt )

         BM = MK ( gt )

=> Tam giác BAM = tam giác KCM 

=> Góc KCM = 90* ( cặp góc tương ứng ) <=> KC vuông góc AC ( đpcm )

b) Xét tam giác AMK và tam giác CMB có :

       KM = MB ( gt )

       AM = MC ( gt )

       M2 = M4  ( Đối đỉnh )

=> Tam giác AMK = tam giác CMB 

=> Góc MKA = góc MBC ( cặp góc tương ứng )

=> AK song song BC ( cặp góc so le trong bằng nhau ) ( đpcm )

26 tháng 2 2017

bạn giỏi quá

10 tháng 12 2016

a) Xét tam giác ABM và tam giác CKM , có:
AM = MC ( M là trung điểm )
MB = MK ( gt)
Góc BMA = KMC ( 2 góc đối đỉnh)
=> tam giác ABM = CKM
=> góc A = góc C ( =90 độ) ( 2 góc tg ứng)
=> KC vuông góc AC
giải phần a đã =)))
 

9 tháng 9 2018

cảm ơn bn\(\dfrac{cảm}{ơn}\)

27 tháng 2 2020

A B C M N K I 1 2 1 2

A) XÉT \(\Delta BAM\)\(\Delta KCM\)

       \(AM=CM\left(GT\right)\)

       \(\widehat{M_1}=\widehat{M_2}\left(Đ/Đ\right)\)

      \(BM=KM\left(GT\right)\)

\(\Rightarrow\Delta BAM=\Delta KCM\left(C-G-C\right)\)

\(\Rightarrow\widehat{BAM}=\widehat{KCM}=90^o\)hai góc tương ứng

HAY \(\widehat{ACK}=90^o\)

b) XÉT \(\Delta IBN\)\(\Delta CAN\)

         \(IN=CN\left(GT\right)\)

         \(\widehat{N_1}=\widehat{N_2}\left(Đ/Đ\right)\)

      \(BN=AN\left(GT\right)\)

\(\Rightarrow\Delta IBN=\Delta CAN\left(C-G-C\right)\)

\(\Rightarrow\widehat{IBN}=\widehat{CAN}=90^o\)hai góc tương ứng

hai góc này ở vị trí SO LE TRONG BẰNG NHAU

\(\Rightarrow IB//AC\left(đpcm\right)\)

\(\widehat{BAM}=\widehat{KCM}=90^o\)

HAY\(\widehat{BAC}=\widehat{ACK}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow AK//BC\left(đpcm\right)\)

C)VÌ\(\widehat{IBN}=\widehat{CAN}=90^o\)

HAY\(\widehat{IBA}=\widehat{BAC}=90^o\)

HAI GÓC NÀY Ở VỊ TRÍ SO LE TRONG BẰNG NHAU

\(\Rightarrow IA//BC\left(1\right)\)

\(AK//BC\left(CMT\right)\left(2\right)\)

TỪ (1)VÀ (2) => I,A,K THẲNG HÀNG

30 tháng 7 2021

a/ xét 2 tam giác AMB và CMK có:

AM = MC (M là t/đ AC)

góc KMC = góc BMA (đối đỉnh)

MK = MB (gt)

=> tam giác AMB = tam giác CMK (c.g.c)

=> góc MAB =  góc MCK = 90 độ hay KC vuông AC (đpcm)

b. xét hai tam giác AMK và CMB có:

AM = MC (M là t/đ AC)

góc AMK = góc CMB (đối đỉnh)

MK = MB (gt)

=> tg AMK = tg CMB (c.g.c)

=> góc AKM = góc CBM mà hai góc này ở vị trí sole trong nên AK // BC (đpcm)

3 tháng 1 2016

phần a bạn sai đê

B. Xét tg BMC và tg KMA có :

^BMC = ^KMA ( đối đỉnh)

MB= MK ( gt)

AM= MC ( Do M là trung điểm của AC ; gt )

→ tg BMC = tg KMA ( c.g.c)

→^ MBC = ^MKA ( 2 góc tương ứng )

Mà đây là 2 góc So letrong 

→ BC // AK 

→ ĐPCM

3 tháng 1 2016

thấy đúng tick giùm nha

21 tháng 6 2019

A B C K M 1 2 3 4

Cm: Xét t/giác ABM và t/giác  CKM 

có : BM = MK (gt)

    \(\widehat{M_1}=\widehat{M_2}\) (đối đỉnh)

   AM = MC (gt)

=> t/giác ABM = t/giác CKM (c.g.c)

=> \(\widehat{BAM}=\widehat{MCK}\) (hai góc t/ứng)

Mà \(\widehat{BAM}\) = 900 => \(\widehat{MCK}=90^0\)

=> KC \(\perp\)AC (Đpcm)

b) Xét  t/giác AMK và t/giác CMB

có AM = MC (gt)

  \(\widehat{M_4}=\widehat{M_3}\) (đối đỉnh)

  MK = MB (gt)

=> t/giác AMK = t/giác CMB (c.g.c)

=> \(\widehat{KAM}=\widehat{MCB}\)(2 góc t/ứng)

Mà 2 góc này ở vị trí so le trong

=> AK // BC (Đpcm)

A) Xét tam giác ABM và tam giác CKM ta có :

BM=MK

AM=MC

BMA = CMK

=> Tam giác ABM = tam giác CKM (c.g.c)

=> BAM = MCK = 90 độ

=> CK vuông góc với AC

B) Xét tam giác AMK và tam giác BMC ta có :

BM=MK

AM = MC

BMC = AMK

=> Tam giác AMK = tam giác BMC(c.g.c)

=> BCM = MAK 

=> AK// BC