K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 2 2019

9 tháng 5 2017

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).

a: SO vuông góc (ABCD)

=>(SAC) vuông góc (ABCD)

SO vuông góc (ABCD)

=>(SBD) vuông góc (ABCD)

b: BD vuông góc AC

BD vuông góc SA

=>BD vuông góc (SAC)

d: (SB;(ABCD))=(BS;BO)=góc SBO

cos SBO=OB/SB=a*căn 2/2/(a*căn 2)=1/2

=>góc SBO=60 độ

19 tháng 4 2018

Giải sách bài tập Toán 11 | Giải sbt Toán 11

a) (BD ⊥ SA & BD ⊥ AC ⇒ BD ⊥ (SAC)

⇒ BC ⊥ SC.

b) (BC ⊥ SA & BC ⊥ AB ⇒ BC ⊥ (SAB)

⇒ (SBC) ⊥ (SAB).

c) + Xác định góc α giữa đường thẳng SC và mp(ABCD):

(C ∈(ABCD) & SA ⊥ (ABCD) ⇒ ∠[(SC,(ABCD))] = ∠(ACS) = α

+ Tính góc:

Tam tam giác vuông SCA, ta có:

tanα = SA/AC = √3/3 ⇒ α   =   30 o .

26 tháng 7 2018

19 tháng 4 2019

Giải bài tập Toán 11 | Giải Toán lớp 11

a) Tam giác ABD có AB = AD ( do ABCD là hình thoi)

=> Tam giác ABD cân tại A. Lại có góc A= 60o

=> Tam giác ABD đều.

Lại có; SA = SB = SD nên hình chóp S.ABD là hình chóp đều.

* Gọi H là tâm của tam giác ABD

=>SH ⊥ (ABD)

*Gọi O là giao điểm của AC và BD.

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

Giải bài 7 trang 122 sgk Hình học 11 | Để học tốt Toán 11

22 tháng 5 2021

Hình chiếu của SC lên (ABCD) là AC.

⇒ (SC, (ABCD)) = (SC,AC) = \(\widehat{SCA}\)

Ta có: AC = a√2

Xét tam SCA vuông tại A, có: \(tan\widehat{SCA}=\dfrac{SA}{SC}=\sqrt{3}\)

\(\Rightarrow\widehat{SCA}=60^o\)

NV
11 tháng 3 2022

25.

\(\lim\dfrac{3.5^n+7.7^n+9}{6.5^n+9.7^n-3}=\lim\dfrac{7^n\left[3\left(\dfrac{5}{7}\right)^n+7+9.\left(\dfrac{1}{7}\right)^n\right]}{7^n\left[6\left(\dfrac{5}{7}\right)^n+9-3\left(\dfrac{1}{7}\right)^n\right]}\)

\(=\lim\dfrac{3\left(\dfrac{5}{7}\right)^n+7+9\left(\dfrac{1}{7}\right)^n}{6\left(\dfrac{5}{7}\right)^n+9-3\left(\dfrac{1}{7}\right)^n}=\dfrac{3.0+7+9.0}{6.0+9-3.0}=\dfrac{7}{9}\)

26.

\(\lim\left(n-\sqrt{n^2-4n}\right)=\lim\dfrac{\left(n-\sqrt{n^2-4n}\right)\left(n+\sqrt{n^2-4n}\right)}{n+\sqrt{n^2-4n}}\)

\(=\lim\dfrac{4n}{n+\sqrt{n^2-4n}}=\lim\dfrac{4n}{n\left(1+\sqrt{1-\dfrac{4}{n}}\right)}\)

\(=\lim\dfrac{4}{1+\sqrt{1-\dfrac{4}{n}}}=\dfrac{4}{1+\sqrt{1-0}}=2\)

NV
11 tháng 3 2022

26.

\(u_1=5\)

\(u_n=405=u_1.q^{n-1}\Rightarrow q^{n-1}=\dfrac{405}{5}=81\)

\(\Rightarrow q^n=81q\)

Do \(S_n=\dfrac{u_1\left(1-q^n\right)}{1-q}\Rightarrow605=\dfrac{5\left(1-81q\right)}{1-q}\)

\(\Rightarrow605-605q=5-405q\)

\(\Rightarrow q=3\)

NV
19 tháng 3 2021

\(SA\perp\left(ABCD\right)\Rightarrow\widehat{SCA}\) là góc giữa SC và (ABCD)

\(AC=\sqrt{AB^2+BC^2}=a\sqrt{2}\)

\(tan\widehat{SCA}=\dfrac{SA}{AC}=\dfrac{a\sqrt{6}}{a\sqrt{2}}=\sqrt{3}\)

\(\Rightarrow\widehat{SCA}=60^0\)

12 tháng 9 2019

Đáp án C

21 tháng 11 2019

Vì SA ⊥ (ABCD) nên AC là hình chiếu vuông góc của SC lên mặt phẳng (ABCD).