K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

Tam giác AB'C là tam giác đều nên suy ra 

Chọn C.

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:A. \({30^ \circ }\).                 B. \({45^ \circ }\).                 C. \({60^ \circ }\).                  D. \({90^ \circ }\).b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:A. 1.                                            B. 2....
Đọc tiếp

Cho hình lập phương \(MNPQ.M'N'P'Q'\) có cạnh bằng \(a\).

a) Góc giữa hai đường thẳng \(MN\) và \(M'P\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

b) Gọi \(\alpha \) là số đo góc giữa đường thẳng \(M'P\) và mặt phẳng \(\left( {MNPQ} \right)\). Giá trị \(\tan \alpha \) bằng:

A. 1.                                            

B. 2.                                            

C. \(\sqrt 2 \).                         

D. \(\frac{1}{{\sqrt 2 }}\).

c) Số đo của góc nhị diện \(\left[ {N,MM',P} \right]\) bằng:

A. \({30^ \circ }\).                 

B. \({45^ \circ }\).                 

C. \({60^ \circ }\).                  

D. \({90^ \circ }\).

d) Khoảng cách từ điểm \(M\) đến mặt phẳng \(\left( {NQQ'N'} \right)\) bằng:

A. \(a\).                                    

B. \(\frac{a}{{\sqrt 2 }}\).  

C. \(a\sqrt 2 \).                      

D. \(\frac{a}{2}\).

1
22 tháng 8 2023

a) Đáp án:B

b) Đáp án:D

c) Đáp án:B

d) Đáp án:B

10 tháng 8 2023

\(\overrightarrow{DM}.\overrightarrow{A'N}=\left(\overrightarrow{DA}+\overrightarrow{AM}\right)\left(\overrightarrow{A'B'}+\overrightarrow{B'N}\right)\)

\(=\overrightarrow{DA}.\overrightarrow{A'B'}+\overrightarrow{AM}.\overrightarrow{A'B'}+\overrightarrow{DA}.\overrightarrow{B'N}+\overrightarrow{AM}.\overrightarrow{B'N}\)

( chứng minh được \(DA\perp A'B',AM\perp B'N\) )

\(=0+\dfrac{1}{2}\overrightarrow{AB}.\overrightarrow{AB}+\overrightarrow{C'B'}.\left(-\dfrac{1}{2}\overrightarrow{C'B'}\right)+0\)

\(=\dfrac{1}{2}AB^2-\dfrac{1}{2}C'B'^2=0\)

Suy ra \(DM\perp A'N\)

Ý A

Chọn A

Chọn C

NV
17 tháng 4 2022

MN là đoạn vuông góc chung \(\Rightarrow N\) là trung điểm A'D

\(\Rightarrow\dfrac{A'N}{A'D}=\dfrac{1}{2}\)

Chọn A

15 tháng 5 2023

Mình cảm ơn 

16 tháng 6 2023

 Gọi O là giao điểm của AC và BD. Dễ thấy \(\Delta OAB\) vuông tại O và \(OB=\dfrac{a\sqrt{3}}{2}\). Từ đó \(OA=\sqrt{AB^2-OB^2}=\sqrt{\left(\dfrac{\sqrt{3}}{2}a\right)^2-a^2}=\sqrt{\dfrac{1}{4}a^2}=\dfrac{a}{2}\) \(\Rightarrow AC=a\).

Vì \(SA\perp mp\left(ABCD\right)\) nên \(SA\perp AC\) tại A hay \(\Delta SAC\) vuông tại A. 

Lại có \(\tan SAC=\dfrac{SA}{AC}=\dfrac{a\sqrt{3}}{a}=\sqrt{3}\) nên \(\widehat{SAC}=60^o\), suy ra góc giữa SC và mp(ABCD) bằng 60o \(\Rightarrow\) Chọn A

 

16 tháng 6 2023

Chỗ \(\widehat{SAC}\) em sửa lại là \(\widehat{SCA}\) mới đúng ạ.

NV
14 tháng 3 2022

a. Gọi cạnh lập phương là a

Ta có: \(AC=\sqrt{AB^2+AD^2}=a\sqrt{2}\) 

\(AH=\sqrt{AD^2+DH^2}=a\sqrt{2}\)

\(CH=\sqrt{CD^2+DH^2}=a\sqrt{2}\)

\(\Rightarrow\Delta ACH\) đều \(\Rightarrow\widehat{CAH}=60^0\)

b.

Do \(B'C||A'D\Rightarrow\) góc giữa A'B và B'C bằng góc giữa A'B và A'D

Tương tự câu a, ta có tam giác A'BD đều \(\Rightarrow\widehat{BA'D}=60^0\)

c.

Do IJ song song SB (đường trung bình), CD song song AB \(\Rightarrow\) góc giữa IJ và CD bằng góc giữa SB và AB

Tam giác SAB đều (các cạnh bằng a) \(\Rightarrow\widehat{SBA}=60^0\)

d.

\(\overrightarrow{EG}=\overrightarrow{AC}\Rightarrow\widehat{\left(\overrightarrow{AF};\overrightarrow{EG}\right)=\widehat{\left(\overrightarrow{AF};\overrightarrow{AC}\right)}=\widehat{FAC}=60^0}\) do tam giác FAC đều 

14 tháng 3 2022

Thầy ơi thầy giúp em dạng này với ạ, em sắp thi rồi ạ :'((  https://hoc24.vn/cau-hoi/a-co-bao-nhieu-gia-tri-cua-a-de-limlimits-xrightarrowinftyleftsqrtx2-ax2021-x1righta2b-tim-a-de-ham-so-fxleftbeginmatrixdfracx31x1khixne-13akhix-1end.5243579572507

14 tháng 9 2019

31 tháng 3 2017

Gọi K là trung điểm của AB  IK // BC (tính chất đường trung bình của tam giác)

Chọn B.