K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 3 2017

Tam  giác ABC có M;  N ; P lần lượt là trung điểm của  BC; AC ; BC nên PM và MN  là đường trung bình của tam giác ABC.

Suy ra: PM// AC;  NM // AB.

Do đó, tứ giác ANMP là hình bình hành.

1 tháng 4 2019

ĐÁP ÁN: C

NV
26 tháng 9 2019

Áp dụng công thức trung điểm:

\(\left\{{}\begin{matrix}x_A+x_B=2x_P=0\\x_A+x_C=2x_N=6\\x_B+x_C=2x_M=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x_A=2\\x_B=-2\\x_C=4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}y_A+y_B=2y_P=-10\\y_A+y_C=2y_N=4\\y_B+y_C=2y_M=-2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}y_A=-2\\y_B=-8\\y_C=6\end{matrix}\right.\)

\(\Rightarrow A\left(2;-2\right)\)

27 tháng 11 2021

thưa thầy , mình nên ấn máy tính ntn để ra đáp án ạ

28 tháng 2 2017

Đáp án là C

17 tháng 6 2017

HQ
Hà Quang Minh
Giáo viên
28 tháng 9 2023

Theo tích chất đường trung bình trong một tam giác ta có: \(\overrightarrow {PN}  = \overrightarrow {BM}  = \overrightarrow {MC} \) và \(\overrightarrow {MP}  = \overrightarrow {NA} \)

Gọi \(A\left( {{a_1},{a_2}} \right),B\left( {{b_1};{b_2}} \right),C\left( {{c_1};{c_2}} \right)\)

Ta có: \(\overrightarrow {PN}  = \left( {2;3} \right)\),\(\overrightarrow {BM}  = \left( {1 - {b_1}; - 2 - {b_2}} \right)\), \(\overrightarrow {MC}  = \left( {{c_1} - 1;{c_2} + 2} \right)\), \(\overrightarrow {MP}  = \left( {5;4} \right)\), \(\overrightarrow {NA}  = \left( {{a_1} - 4;{a_2} + 1} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {BM}  \Leftrightarrow \left\{ \begin{array}{l}2 = 1 - {b_1}\\3 =  - 2 - {b_2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{b_1} =  - 1\\{b_2} =  - 5\end{array} \right.\) .Vậy \(B\left( { - 1; - 5} \right)\)

Có \(\overrightarrow {PN}  = \overrightarrow {MC}  \Leftrightarrow \left\{ \begin{array}{l}2 = {c_1} - 1\\3 = {c_2} + 2\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{c_1} = 3\\{c_2} = 1\end{array} \right.\) .Vậy \(C\left( {3;1} \right)\)

Có \(\overrightarrow {NA}  = \overrightarrow {MP}  \Leftrightarrow \left\{ \begin{array}{l}5 = {a_1} - 4\\4 = {a_2} + 1\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{a_1} = 9\\{a_2} = 3\end{array} \right.\) .Vậy \(A\left( {9;3} \right)\)

NV
26 tháng 9 2019

Trọng tâm của ABC cũng đồng thời là trọng tâm của MNP

\(\Rightarrow\left\{{}\begin{matrix}x_G=\frac{x_M+x_N+x_P}{3}=-\frac{4}{3}\\y_G=\frac{y_A+y_B+y_C}{3}=-\frac{4}{3}\end{matrix}\right.\)

\(\Rightarrow G\left(-\frac{4}{3};-\frac{4}{3}\right)\)