K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

P nhỏ nhất khi x2 + 3x + 10 lớn nhất

Ta có: \(x^2+3x+10=x^2+2.x.\frac{3}{2}+\frac{9}{4}+\frac{31}{4}=\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\)không có GTLN

=> P không có GTNN

P lớn nhất khi x2 + 3x + 10 nhỏ nhất

<=> \(\left(x+\frac{3}{2}\right)^2+\frac{31}{4}\text{ nhỏ nhất }\left(=\frac{31}{4}\right)\)

<=> x + 3/2 = 0

<=> x = -3/2

=> GTLN của P là -20/31 <=> x = -3/2

*Giải theo cách lp 8*

2 tháng 1 2016

tích mình đi , mình gần được 40 rồi

2 tháng 1 2024

Ta có: \(\left\{{}\begin{matrix}\left(x-3\right)^2\ge0\forall x\\\left|y-5\right|\ge0\forall y\end{matrix}\right.\)

\(\Rightarrow\left(x-3\right)^2+\left|y-5\right|\ge0\forall x,y\)

\(\Rightarrow10+\left(x-3\right)^2+\left|y-5\right|\ge10\forall x,y\)

\(\Rightarrow D=-10-\left(x-3\right)^2-\left|y-5\right|\le-10\forall x,y\)

Dấu \("="\) xảy ra khi: \(\left\{{}\begin{matrix}x-3=0\\y-5=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=5\end{matrix}\right.\)

Vậy \(Max_D=-10\) khi \(x=3;y=5\).

\(A=-\left(x^2-3x-4\right)\)

\(=-\left(x^2-2.x\frac{3}{2}+\frac{9}{4}+\frac{7}{4}\right)\)

\(=-\left(\left(x-\frac{3}{2}\right)+\frac{7}{4}\right)\)

\(=-\frac{7}{4}-\left(x-\frac{3}{2}\right)^2\le\frac{-7}{4}\)

Vậy \(MAXA=\frac{-7}{4}\Leftrightarrow x-\frac{3}{2}=0\Rightarrow x=\frac{3}{2}\)

15 tháng 7 2016

\(B=2\left(x^2-\frac{3}{2}x+1\right)=2\left(x^2-2\times x\times\frac{3}{4}+\frac{9}{16}-\frac{9}{16}+1\right)=2\left(x-\frac{3}{4}\right)^2+\frac{7}{8}\ge\frac{7}{8}\)

MIN B = 7/8 <=> x=3/4

6 tháng 1 2018

\(M=x^2+y^2+xy-3x-3y+2018\)

\(=x^2+2x\frac{\left(y-3\right)}{2}+\left(\frac{y-3}{2}\right)^2+y^2-3y+2018-\left(\frac{y-3}{2}\right)^2\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3y^2-6y+8063}{4}\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y^2-2y+1\right)}{4}+2015\)

\(=\left(x+\frac{y-3}{2}\right)^2+\frac{3\left(y-1\right)^2}{4}+2015\ge2015\)

\("="\Leftrightarrow x=y=1\)

6 tháng 1 2018

Cảm ơn bạn nhiều nha