K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 6 2017

y ' = 3 x 2 + 6 x - m

Để hàm số đã cho đồng biến trên R khi và chỉ khi:

y ' = 3 x 2 + 6 x - m ≥ 0 ∀ x ∈ R

⇔ Δ = 9 + 3m ≤ 0 ⇔ m ≤ -3

Vậy giá trị lớn nhất của m để hàm số đã cho đồng biến trên R là m = -3.

Chọn A.

30 tháng 12 2023

Bài 1:

Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0

=>m<>2

a=2-m

b=-2

Bài 2:

a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0

=>m>5

b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0

=>m<5

Bài 3:

a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)

b: Để (d1) cắt (d2) thì \(3-m\ne2\)

=>\(m\ne1\)

c: Để (d1) cắt (d2) tại một điểm trên trục tung thì

\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)

=>m=2

28 tháng 2 2023

28 tháng 2 2023

Số 0 là số nguyên ạ?

22 tháng 11 2023

loading...  loading...  loading...  

22 tháng 11 2023

tròi oi a viết chữ xấu wá đi à, đọc bài của a mà đau mắt wá

y'=1/3*3x^2(m-1)-(m-1)2x+1

=x^2(m-1)-x(2m-2)+1

Để hàm số đồng biến trên R thì y'>0 với mọi x

=>m-1<>0 và (2m-2)^2-4(m-1)>0

=>m<>1 và 4m^2-8m+4-4m+4>0

=>4m^2-12m+8>0 và m<>1

=>m^2-3m+2>0 và m<>1

=>m>2 hoặc m<1

12 tháng 11 2023

a: ĐKXĐ: x<>m

=>TXĐ: D=R\{m}

\(y=\dfrac{mx-2m-3}{x-m}\)

=>\(y'=\dfrac{\left(mx-2m-3\right)'\cdot\left(x-m\right)-\left(mx-2m-3\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-2m-3\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+2m+3}{\left(x-m\right)^2}=\dfrac{-m^2+2m+3}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(y'>0\forall x\in TXĐ\)

=>\(\dfrac{-m^2+2m+3}{\left(x-m\right)^2}>0\)

=>\(-m^2+2m+3>0\)

=>\(m^2-2m-3< 0\)

=>(m-3)(m+1)<0

TH1: \(\left\{{}\begin{matrix}m-3>0\\m+1< 0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>3\\m< -1\end{matrix}\right.\)

=>\(m\in\varnothing\)

TH2: \(\left\{{}\begin{matrix}m-3< 0\\m+1>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>-1\\m< 3\end{matrix}\right.\)

=>-1<m<3

b: TXĐ: D=R\{m}

\(y=\dfrac{mx-4}{x-m}\)

=>\(y'=\dfrac{\left(mx-4\right)'\left(x-m\right)-\left(mx-4\right)\left(x-m\right)'}{\left(x-m\right)^2}\)

\(=\dfrac{m\left(x-m\right)-\left(mx-4\right)}{\left(x-m\right)^2}\)

\(=\dfrac{mx-m^2-mx+4}{\left(x-m\right)^2}=\dfrac{-m^2+4}{\left(x-m\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì \(\dfrac{-m^2+4}{\left(x-m\right)^2}>0\)

=>\(-m^2+4>0\)

=>\(-m^2>-4\)

=>\(m^2< 4\)

=>-2<m<2

11 tháng 5 2018

12 tháng 11 2023

a: TXĐ: D=R\{3}

\(y=\dfrac{2m-x}{x-3}\)

=>\(y'=\dfrac{\left(2m-x\right)'\left(x-3\right)-\left(2m-x\right)\left(x-3\right)'}{\left(x-3\right)^2}\)

\(=\dfrac{-\left(x-3\right)-2m+x}{\left(x-3\right)^2}\)

\(=\dfrac{3-2m}{\left(x-3\right)^2}\)

Để hàm số đồng biến trên từng khoảng xác định thì y'>0 với mọi x thỏa mãn ĐKXĐ

=>\(\dfrac{3-2m}{\left(x-3\right)^2}>0\)

=>3-2m>0

=>2m<3

=>\(m< \dfrac{3}{2}\)

b: TXĐ: D=R\{-m}

\(y=\dfrac{x+3}{x+m}\)

=>\(y'=\dfrac{\left(x+3\right)'\left(x+m\right)-\left(x+3\right)\left(x+m\right)'}{\left(x+m\right)^2}\)

\(=\dfrac{x+m-x-3}{\left(x+m\right)^2}=\dfrac{m-3}{\left(x+m\right)^2}\)

Để hàm số nghịch biến trên từng khoảng xác định thì \(y'< 0\forall x\in TXĐ\)

=>\(\dfrac{m-3}{\left(x+m\right)^2}< 0\)

=>m-3<0

=>m<3

11 tháng 11 2023

a: \(y=-x^3+\left(m+2\right)x^2-3x\)

=>\(y'=-3x^2+2\left(m+2\right)x-3\)

=>\(y'=-3x^2+\left(2m+4\right)\cdot x-3\)

Để hàm số nghịch biến trên R thì \(y'< =0\forall x\)

=>\(\left\{{}\begin{matrix}\left(2m+4\right)^2-4\cdot\left(-3\right)\left(-3\right)< =0\\-3< 0\end{matrix}\right.\)

=>\(4m^2+16m+16-4\cdot9< =0\)

=>\(4m^2+16m-20< =0\)

=>\(m^2+4m-5< =0\)

=>\(\left(m+5\right)\left(m-1\right)< =0\)

TH1: \(\left\{{}\begin{matrix}m+5>=0\\m-1< =0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=-5\\m< =1\end{matrix}\right.\)

=>-5<=m<=1

TH2: \(\left\{{}\begin{matrix}m+5< =0\\m-1>=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}m>=1\\m< =-5\end{matrix}\right.\)

=>\(m\in\varnothing\)

b: \(y=x^3-3x^2+\left(1-m\right)x\)

=>\(y'=3x^2-3\cdot2x+1-m\)

=>\(y'=3x^2-6x+1-m\)

Để hàm số đồng biến trên R thì \(y'>=0\forall x\)

=>\(\left\{{}\begin{matrix}\text{Δ}< =0\\a>0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}3>0\\\left(-6\right)^2-4\cdot3\left(1-m\right)>=0\end{matrix}\right.\)

=>\(36-12\left(1-m\right)>=0\)

=>\(36-12+12m>=0\)

=>12m+24>=0

=>m+2>=0

=>m>=-2

29 tháng 9 2016

Theo mình:

để hàm số đồng biến, đk cần là y'=0.

a>0 và \(\Delta'< 0\)

nghịch biến thì a<0 

vì denta<0 thì hầm số cùng dấu với a

mình giải được câu a với b

câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb) 

câu d dùng viet

câu e mình chưa chắc lắm ^^

15 tháng 7 2019

Đáp án: D.

Hàm số đồng biến trên tập xác định R khi và chỉ khi

y' = 3 x 2  - 4mx + 12 ≥ 0, ∀ x ⇔ ∆ ' = 4m2 - 36 ≤ 0 ⇔ -3  ≤  m  ≤  3.