K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

15 tháng 1 2018

Đáp án A

Cách 1:  Tư duy tự luận

Cách 2:  Sử dụng máy tính cầm tay

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 1:

\(A=\log_380=\log_3(2^4.5)=\log_3(2^4)+\log_3(5)\)

\(=4\log_32+\log_35=4a+b\)

\(B=\log_3(37,5)=\log_3(2^{-1}.75)=\log_3(2^{-1}.3.5^2)\)

\(=\log_3(2^{-1})+\log_33+\log_3(5^2)=-\log_32+1+2\log_35\)

\(=-a+1+2b\)

AH
Akai Haruma
Giáo viên
12 tháng 11 2018

Bài 2:

\(\log_{30}8=\frac{\log 8}{\log 30}=\frac{\log (2^3)}{\log (10.3)}=\frac{3\log2}{\log 10+\log 3}\)

\(=\frac{3\log (\frac{10}{5})}{1+\log 3}=\frac{3(\log 10-\log 5)}{1+\log 3}=\frac{3(1-b)}{1+a}\)

HQ
Hà Quang Minh
Giáo viên
24 tháng 8 2023

\(a,A=log_23\cdot log_34\cdot log_45\cdot log_56\cdot log_67\cdot log_78\\ =log_28\\ =log_22^3\\ =3\\ b,B=log_22\cdot log_24...log_22^n\\ =log_22\cdot log_22^2...log_22^n\\ =1\cdot2\cdot...\cdot n\\ =n!\)

D
datcoder
CTVVIP
14 tháng 8 2023

a) \(\ln\left(\sqrt{5}+2\right)+\ln\left(\sqrt{5}-2\right)=ln\left(\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right)=\ln\left(\left(\sqrt{5}\right)^2-2^2\right)=ln\left(5-4\right)=\ln1=\ln e^0=1\)

b) \(\log400-\log4=\log\dfrac{400}{4}=\log100=\log10^{10}=10.\log10=10.1=10\)

c) \(\log_48+\log_412+\log_4\dfrac{32}{2}=\log_4\left(8.12.\dfrac{32}{2}\right)=\log_4\left(1024\right)=\log_44^5=5.\log_44=5.1=5\)

a: \(=ln_2\left[\left(\sqrt{5}+2\right)\left(\sqrt{5}-2\right)\right]=ln1=0\)

b: \(=log\left(\dfrac{400}{4}\right)=log\left(100\right)=10\)

c: \(=log_4\left(8\cdot12\cdot\dfrac{32}{3}\right)=log_4\left(32\cdot32\right)=5\)

18 tháng 8 2023

a) \(log_216=4\)

b) \(log_3\dfrac{1}{27}=-3\)

c) \(log1000=3\)

d) \(9^{log_312}=144\)

a: \(log_49=\dfrac{log9}{log4}=\dfrac{log3^2}{log2^2}=\dfrac{2\cdot log3}{2\cdot log2}=\dfrac{log3}{log2}=\dfrac{b}{a}\)

b: \(log_612=\dfrac{log12}{log6}=\dfrac{log2^2+log3}{log2+log3}=\dfrac{2\cdot log2+log3}{log2+log3}\)

\(=\dfrac{2a+b}{a+b}\)

c: \(log_56=\dfrac{log6}{log5}=\dfrac{log\left(2\cdot3\right)}{log\left(\dfrac{10}{2}\right)}=\dfrac{log2+log3}{log10-log2}\)

\(=\dfrac{a+b}{1-a}\)

18 tháng 8 2023

a) \(log_29\cdot log_34=4\)

b) \(log_{25}\cdot\dfrac{1}{\sqrt{5}}=-\dfrac{1}{4}\)

c) \(log_23\cdot log_9\sqrt{5}\cdot log_54=\dfrac{1}{2}\)

\(log_{12}21=\dfrac{log_321}{log_312}=\dfrac{log_3\left(7\cdot3\right)}{log_3\left(2^2\cdot3\right)}=\dfrac{log_37+log_33}{log_34+log_33}\)

\(=\dfrac{log_37+1}{log_32^2+1}=\dfrac{log_37+1}{2\cdot log_32+1}=\dfrac{b+1}{2a+1}\)

18 tháng 8 2023

a) \(log_69+log_64=log_636=2\)

b) \(log_52-log_550=log_5\left(2:50\right)=-2\)

c) \(log_3\sqrt{5}-\dfrac{1}{2}log_550=-1,0479\)

a: \(log_{\dfrac{1}{4}}8=log_{2^{-2}}2^3=\dfrac{-3}{2}\cdot log_22=-\dfrac{3}{2}\)

b: \(log_45\cdot log_56\cdot log_68\)

\(=log_45\cdot\dfrac{log_46}{log_45}\cdot\dfrac{log_48}{log_46}\)

\(=log_48=log_{2^2}2^3=\dfrac{3}{2}\)