K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2016

x= 3; y=2; z=8

chắc chắn luôn

5 tháng 7 2017

8105xyz chia 5 dư 3 nên z = {3; 8}

Do 8105xyz không chia hết cho 2 nên z=3 => 8105xyz = 8105xy3 

8105xy3 chia hết cho 3 nên 8+1+5+x+y+3=17+(x+y) phải chia hết cho 3 nên

(x+y)=y+2+y=2(y+1)={1;4;10; 13; 16; 19}

Do 2(y+1) chẵn nên => 2(y+1)={4; 10; 16} => y={1; 4; 7} => x = {3; 6; 9}

9 tháng 4 2017

x=3

y=2

z=8

4 tháng 7 2017

x = 3

y = 2

z = 8

23 tháng 9 2023

13

 

3 tháng 8 2023

Ta có:

\(k.x^4.y^6.z^{2020}-x^4.y^6.z^{2020}\) 

\(=\left(k-1\right).x^4.y^6.x^{2020}\) 

Ta cần xác định \(\left(k-1\right)\) có không âm hoặc bằng 0

Nếu \(\left(k-1\right)>0\Leftrightarrow k>1\) thì hiệu của 2 đơn thức ko âm

Nếu \(\left(k-1\right)=0\Leftrightarrow k=1\) thì hiệu của 2 đơn thức ko âm

Vậy để 2 đơn thức đó ko âm ta cần khi  \(k\ge1\)

5 tháng 8 2023

giải giúp e bài lý với

19 tháng 10 2019

c) Cách 1:

x^4+3x^3-x^2+ax+b x^2+2x-3 x^2+x x^4+2x^3-3x^2 - x^3+2x^2+ax+b x^3+2x^2-3x - (a+3)x+b

Để \(P\left(x\right)⋮Q\left(x\right)\)

\(\Leftrightarrow\left(a+3\right)x+b=0\)

\(\Leftrightarrow\hept{\begin{cases}a+3=0\\b=0\end{cases}\Leftrightarrow}\hept{\begin{cases}a=-3\\b=0\end{cases}}\)

Vậy a=-3 và b=0 để \(P\left(x\right)⋮Q\left(x\right)\)

19 tháng 10 2019

a) 

  2n^2-n+2 2n+1 n-1 2x^2+n - -2n+2 -2n-1 - 3

Để \(2n^2-n+2⋮2n+1\)

\(\Leftrightarrow3⋮2n+1\)

\(\Leftrightarrow2n+1\inƯ\left(3\right)=\left\{\pm1;\pm3\right\}\)

\(\Leftrightarrow n\in\left\{0;1;-2;-1\right\}\)

Vậy \(n\in\left\{0;1;-2;-1\right\}\)để \(2n^2-n+2⋮2n+1\)

28 tháng 9 2017

{5;8}