\(C=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right)....\left(\frac{1}{81}-1\right).\left(\frac{1}{100}-1\right)\)
Cho mình cách giải nhé !!!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(S=\left(\frac{1}{4}-1\right).\left(\frac{1}{9}-1\right).\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right).\left(\frac{1}{100}-1\right)\)
\(S=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}........\frac{-80}{81}.\frac{-99}{100}\)
\(-S=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}......\frac{80}{81}.\frac{99}{100}\)
\(-S=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}........\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(-S=\frac{1.3.2.4.3.5........8.10.9.11}{2.2.3.3.4.4.......9.9.10.10}\)
\(-S=\frac{\left(1.2.3......8.9\right).\left(3.4.5.......10.11\right)}{\left(2.3.4.......9.10\right).\left(2.3.4........9.10\right)}\)\(=\frac{1}{10}.\frac{11}{2}=\frac{11}{20}=>S=\frac{-11}{20}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)....\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}....\frac{-80}{81}.\frac{-99}{100}\)
\(=\left[\left(-1\right).\left(-1\right)...\left(-1\right)\left(9\text{số (-1)}\right)\right].\frac{3}{4}.\frac{8}{9}....\frac{99}{100}\)
\(=\left(-1\right).\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{9.11}{10.10}\)
\(=-\frac{1.11}{2.10}=-\frac{11}{10}\)
\(\left(\frac{1}{4}-1\right)\left(\frac{1}{9}-1\right)\left(\frac{1}{16}-1\right)...\left(\frac{1}{81}-1\right)\left(\frac{1}{100}-1\right)\)
\(=\frac{-3}{4}.\frac{-8}{9}.\frac{-15}{16}.....\frac{-80}{81}.\frac{-99}{100}\)
\(=\left[\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right).\left(-1\right)\right].\frac{3}{4}.\frac{8}{9}.....\frac{99}{100}\)
\(=\left(-1\right).\frac{1.3}{2.2}.\frac{2.4}{3.3}....\frac{9.11}{10.10}\)
\(=-\frac{1.11}{2.10}=-\frac{11}{10}\)
\(A=\left(\frac{1-2^2}{2^2}\right)\left(\frac{1-3^2}{3^2}\right)....\left(\frac{1-10^2}{10^2}\right)\)
\(A=\frac{\left(1+2\right)\left(1-2\right)}{2^2}.\frac{\left(1-3\right)\left(1+3\right)}{3^2}.......\frac{\left(1-10\right)\left(1+10\right)}{10^2}\)
\(A=\frac{3.\left(-1\right)}{2^2}.\frac{\left(-2\right).4}{3^2}........\frac{\left(-9\right).11}{10^2}=-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}....\frac{9.11}{10^2}\right)\)
\(=-\left(\frac{1.2....9}{2.3....10}.\frac{3.4....11}{2.3.4...10}\right)=-\left(\frac{1}{10}.\frac{11}{2}\right)=\frac{-11}{20}\)
\(B=\left(1-\frac{1}{4}\right).\left(1-\frac{1}{9}\right).\left(1-\frac{1}{16}\right)...\left(1-\frac{1}{81}\right).\left(1-\frac{1}{100}\right)\)
\(B=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{80}{81}.\frac{99}{100}\)
\(B=\frac{1.3}{2.2}.\frac{2.4}{3.3}.\frac{3.5}{4.4}...\frac{8.10}{9.9}.\frac{9.11}{10.10}\)
\(B=\frac{1.2.3...8.9}{2.3.4...9.10}.\frac{3.4.5...10.11}{2.3.4...9.10}\)
\(B=\frac{1}{10}.\frac{11}{2}\)
\(B=\frac{11}{20}>\frac{11}{21}\)
C = \(\left(\frac{1}{2^2}-1\right)\left(\frac{1}{3^2}-1\right).......\left(\frac{1}{9^2}-1\right)\left(\frac{1}{10^2}-1\right)\)
= \(\frac{-3}{2^2}.\frac{-8}{3^2}.............\frac{-80}{9^2}.\frac{-99}{10^2}\)
= \(-\left(\frac{1.3}{2^2}.\frac{2.4}{3^2}..........\frac{8.10}{9^2}.\frac{9.11}{10^2}\right)\)
= \(-\frac{\left(1.2.3......8.9\right)\left(3.4.5........10.11\right)}{\left(2.3.4......9.10\right)\left(2.3.4......9.10\right)}=-\frac{1.11}{10.2}=-\frac{11}{20}\)
thấy được quy luật r, mỗi p/s là số chính phương