Cho hai số có tổng là S và tích là P với S 2 ≥ 4P. Khi đó hai số đó là hai nghiệm của phương trình nào dưới đây:
A. X 2 - PX + S = 0
B. X 2 - SX + P = 0
C. S X 2 - X + P = 0
D. X 2 - 2SX + P = 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4 P )
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình
X 2 – S X + P = 0 ( Đ K : S 2 ≥ 4 P )
Đáp án: B
Gọi x 1 , x 2 là nghiệm của phương trình x 2 - 2 m x + 1 = 0 . Khi đó x 1 + x 2 = 2 m x 1 . x 2 = 1
Gọi
x
3
,
x
4
là nghiệm của phương trình
x
2
-
2
m
x
+
1
=
0
. Khi đó
x
3
+
x
4
=
2
x
3
.
x
4
=
m
Ta có: x 1 = 1 x 3 x 2 = 1 x 4 ⇒ x 1 + x 2 = 1 x 3 + 1 x 4 x 1 . x 2 = 1 x 3 . x 4
⇒ x 1 + x 2 = x 3 + x 4 x 3 . x 4 x 1 . x 2 = 1 x 3 . x 4 ⇔ 2 m = 2 m 1 = 1 m ⇔ m = 1
Đáp án cần chọn là: C
Chắc pt đầu là x^2+mx+n (:))
Từ điều kiện ta có m khác p, n khác q
Gọi a là nghiệm chung của 2 pt=> a^2+ma+n=a^2+pa+q=0=> a(m-p)=q-n=>a=(q-n)/(m-p)
Mà m,n,p,q là các số hữu tỉ=> a là số hữu tỉ
Gọi b là nghiệm còn lại của pt (:))Theo hệ thức Vi-ét:a*b=n là số hữu tỉ=> b là số hữu tỉ
cmtt ta có nghiệm còn lại của pt còn lại cũng là số hữu tỉ
Đáp án B
Nếu hai số có tổng là S và tích là P thì hai số đó là hai nghiệm của phương trình X 2 - SX + P = 0 (ĐK: S 2 ≥ 4P)