Tìm m để 2 hệ phương trình sau tương đương:
\(\int^{x+y=1}_{2x-3y=2}\) và \(\int^{mx+y=2}_{3x+my=3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Tìm m để 2 hệ phương trình sau tương đương:
\(\int^{x+y=1}_{2x-3y=2}\) và \(\int^{mx+y=2}_{3x+my=3}\)
mấy cái này dễ mà k lm đc à ......................................nói v thui chứ t cũng k bik làm ^^
a) thay m=2 ... tự thay
\(\Leftrightarrow\int^{2y+x=2\left(1\right)}_{2x-2y=1\left(2\right)}\)
=>2y+x-2=0(1)
=>-2y+2x-1=0(2)
=>-(2y-2x+1)=0(2)
=>2y-2x+1=0(2)
vẽ đồ thị hàm số ra
=>x=1;\(y=\frac{1}{2}\)hoặc 0,5
b,c ko biết nên ns thế nào ^^
a: Vì m/1<>-m/1
neen hệ luôn có nghiệm
b: mx-y=2 và x+my=3
=>y=mx-2 và x+m(mx-2)=3
=>y=mx-2 và x(1+m^2)=5
=>x=5/m^2+1 và y=5m/m^2+1-2=(5m-2m^2-2)/m^2+1=(-2m^2+5m-2)/m^2+1
x>0; y>0
=>5>0 và -2m^2+5m-2>0
=>2m^2-5m+2<0
=>2m^2-4m-m+2<0
=>(m-2)(2m-1)<0
=>1/2<m<2
1: Khi m=3 thì hệ phương trình (1) trở thành:
\(\left\{{}\begin{matrix}3x-2y=-1\\2x+3y=1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{13}\\y=\dfrac{5}{13}\end{matrix}\right.\)
2: Khi x=-1/2 và y=2/3 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}2\cdot\dfrac{-1}{2}+3\cdot\dfrac{2}{3}=1\\-\dfrac{1}{2}m-\dfrac{4}{3}=-1\end{matrix}\right.\Leftrightarrow m\cdot\dfrac{-1}{2}=\dfrac{1}{3}\)
hay m=-2/3
Để 2 phương trình này tương đương thì nghiệm của hệ (1) cũng là ngiệm của hệ (2)
Giải hệ (1) \(\int^{x+y=1}_{2x-3y=2}\Leftrightarrow\int^{x=1-y}_{2\left(1-y\right)-3y=2}\Leftrightarrow\int^{x=1-y}_{2-5y=2}\Leftrightarrow\int^{x=1-y}_{y=0}\Leftrightarrow\int^{x=1}_{y=0}\)
Thay vào hệ (2) ta được m=2
Giair 1
thay vào 2