K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 10 2018

Đáp án là A

Ta có: x + 3 = (x + 1) + 2

Vì (x + 3) ⋮ (x + 1), (x + 1) ⋮ (x + 1) ⇒ 2 ⋮ (x + 1)

Do đó, x + 1 = ±1 hoặc x + 1 = ±2

Nếu x + 1 = ±1 thì x = 0 hoặc x = -2

Nếu x + 1 = ±2 thì x = 1 hoặc x = -3

Vậy x ∈ {-3; -2; 0; 1}

3 tháng 5 2019

a) \(6xy+4x-9y-7=0\)

  \(\Leftrightarrow2x.\left(3y+2\right)-9y-6-1=0\)

\(\Leftrightarrow2x.\left(3y+x\right)-3.\left(3y+2\right)=1\)

\(\Leftrightarrow\left(2x-3\right).\left(3y+2\right)=1\)

Mà \(x,y\in Z\Rightarrow2x-3;3y+2\in Z\)

Tự làm típ

4 tháng 5 2019

\(A=x^3+y^3+xy\)

\(A=\left(x+y\right)\left(x^2-xy+y^2\right)+xy\)

\(A=x^2-xy+y^2+xy\)( vì \(x+y=1\))

\(A=x^2+y^2\)

Áp dụng bất đẳng thức Bunhiakovxky ta có :

\(\left(1^2+1^2\right)\left(x^2+y^2\right)\ge\left(x\cdot1+y\cdot1\right)^2=\left(x+y\right)^2=1\)

\(\Leftrightarrow2\left(x^2+y^2\right)\ge1\)

\(\Leftrightarrow x^2+y^2\ge\frac{1}{2}\)

Hay \(x^3+y^3+xy\ge\frac{1}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow x=y=\frac{1}{2}\)

27 tháng 11 2021

Answer:

a. \(-5< x< 5\)

\(\Rightarrow x\in\left\{\pm4;\pm3;\pm2;\pm1;0\right\}\)

Tổng các số nguyên x thoả mãn:

\((-4) + (-3) + (-2) + (-1) + 0 + 1 + 2 + 3 + 4\)

\(= (4 - 4) + (3 - 3) + (2 - 2) + (1 - 1) + 0\)

\(=0\)

a) => 2xy +3x=y+1

=> 2xy+3x-y=1

=> x(2y+3) -  1/2 (2y+3) +3/2 =1

=> (x-1/2)(2y+3)=1-3/2= -1/2

=> (2x-1)(2y+3)=-1

ta có bảng

...........

28 tháng 6 2023

(x-1)(x-3)(x-4)>0

Trường hợp 1 :

x-1>0; x-3>0; x-4>0

Nên x>1; x>3; x>4

Vậy x>4 (hay x∈ Z/x ∈ { 5;6;7...})

Trường hợp 2 :

x-1>0; x-3<0; x-4<0

Nên x>1; x<3; x<4

Vậy 1<x<3 (hay x∈ Z/x ∈ { 2 })

 

28 tháng 6 2023

Bn giải nhầm đề bài rùi kìa