K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 5 2017

Đáp án C

3 tháng 7 2020

\(\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4\sqrt{x}}+\frac{4x\sqrt{x}+4\sqrt{x}}{4x^2+9x+18\sqrt{x}+9}-2=\frac{\left(-4x\sqrt{x}+4x^2+9x+22\sqrt{x}+9\right)^2}{\left(4x^2+9x+18\sqrt{x}+9\right)\left(4x\sqrt{x}+4\sqrt{x}\right)}\ge0\)

3 tháng 7 2020

Đặt \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}\left(x>0\right)\Rightarrow M>0\)

Đặt \(y=\sqrt{x}>0\)ta có \(M=\frac{4x^2+9x+18\sqrt{x}+9}{4x\sqrt{x}+4x}=\frac{4y^4+9y^2+18y+9}{4y^3+4y^2}\)\(=\frac{3\left(4y^3+4y^2\right)+\left(4y^2-12y^3-3y^2+18y+9\right)}{4y^3+4y^2}=3+\frac{\left(2y^2-3y-3\right)^2}{4y^3+4y^2}\ge3\)

\(y>0\Rightarrow\hept{\begin{cases}4y^3+4y^2>0\\\left(2y^2-3y-3\right)^2\ge0\end{cases}\Rightarrow\frac{\left(2y-3y-3\right)^2}{4y^3+4y^2}\ge0}\)

Đẳng thức xảy ra \(\Leftrightarrow2y^2-3y-3=0\Leftrightarrow y=\frac{3+\sqrt{33}}{4}\left(y>0\right)\)

\(\Rightarrow x=\left(\frac{3+\sqrt{33}}{4}\right)^2=\frac{21+3\sqrt{33}}{8}\)

Khi đó \(A=M+\frac{1}{M}=\frac{8M}{9}+\left(\frac{M}{9}+\frac{1}{M}\right)\ge\frac{8\cdot3}{9}+2\sqrt{\frac{M}{9}\cdot\frac{1}{M}}=\frac{8}{3}+\frac{2}{3}=\frac{10}{3}\)

Đẳng thức xảy ra \(\Leftrightarrow\hept{\begin{cases}M=3\\\frac{M}{9}=\frac{1}{M}\end{cases}\Leftrightarrow M=3\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}}\)

Vậy \(A_{min}=\frac{10}{3}\Leftrightarrow x=\frac{21+3\sqrt{33}}{8}\)

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 làA.   3                                      B. 4                               C. -3                     D. -4    Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 làA.   3                                    B. 4                                C....
Đọc tiếp

Câu 18: Giá trị nhỏ nhất của biểu thức x2 – 6x + 13 là

A.   3                                      B. 4                               C. -3                     D. -4  

  Câu 19 : Giá trị lớn nhất của biểu thức  -x2 +4x -  7 là

A.   3                                    B. 4                                C. -3                        D. 5

  Câu 20: Điền vào chỗ trống 4x2 + 4x – y2 + 1 = (…)(2x + y + 1):

       A. 2x + y + 1                                                           B. 2x – y + 1

      C. 2x – y                                                                  D. 2x + y

2
30 tháng 10 2021

18.B
19.C
20.C

30 tháng 10 2021

18. B

19. C

20.C

16 tháng 7 2016

ta có: \(4x^2+9x+18\sqrt{x}+9=4x^2+9\left(\sqrt{x}+1\right)^2\),\(4x\sqrt{x}+4x=4x\left(\sqrt{x}+1\right)\)
Đặt \(a=x,b=\sqrt{x}+1\)ta có:
\(A=\frac{4a^2+9b^2}{4ab}+\frac{4ab}{4a^2+9b^2}=t+\frac{1}{t},t=\frac{4a^2+9b^2}{4ab}\)
có \(\frac{4a^2+9b^2}{4ab}=t\Rightarrow4a^2-t.4ab+9b^2=0\Leftrightarrow4.\left(\frac{a}{b}\right)^2-4t.\frac{a}{b}+9=0,\)do a khác 0.
Đặt \(\frac{a}{b}=y\Rightarrow4y^2-t.4y+9=0\)\(\Delta=16t^2-36\ge0\Leftrightarrow t\ge\frac{3}{2}\left(t>0\right)\)
xét \(f\left(t\right)=t+\frac{1}{t}\left(t\ge\frac{3}{2}\right)\)
lấy \(\frac{3}{2}< t_1< t_2\)
\(\Rightarrow f\left(t_1\right)-f\left(t_2\right)=\left(t_1-t_2\right)\left(\frac{t_1.t_2-1}{t_1.t_2}\right)< 0\)
suy ra với t càng tăng thì f(t) càng lớn vậy min \(f\left(t\right)=\frac{3}{2}+\frac{2}{3}=\frac{13}{6}\)
các em tự tìm x nhé.

9 tháng 7 2016

bài này bạn áp dụng BĐT cô si cko 2 số dương là đc.

đáp án: Min A=  2

9 tháng 7 2016

dùng côsi ra = 1 chắc v

10 tháng 7 2016

ê tuấn nếu cô-si thì mk nghĩ phải =2 chứ sao =1 được 

23 tháng 10 2020

A = x2 - 2x + 9 = ( x2 - 2x + 1 ) + 8 = ( x - 1 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 1

=> MinA = 8 <=> x = 1

B = x2 + 6x - 3 = ( x2 + 6x + 9 ) - 12 = ( x + 3 )2 - 12 ≥ -12 ∀ x

Dấu "=" xảy ra khi x = -3

=> MinB = -12 <=> x = -3

C = ( x - 1 )( x - 3 ) + 9 = x2 - 4x + 3 + 9 = ( x2 - 4x + 4 ) + 8 = ( x - 2 )2 + 8 ≥ 8 ∀ x

Dấu "=" xảy ra khi x = 2

=> MinC = 8 <=> x = 2

D = -x2 - 4x + 7 = -( x2 + 4x + 4 ) + 11 = -( x + 2 )2 + 11 ≤ 11 ∀ x

Dấu "=" xảy ra khi x = -2

=> MaxD = 11 <=> x = -2

27 tháng 10 2020

hello, cần lm j z?

7 tháng 11 2021

\(A=\left(x-1\right)^2+8\ge8\\ A_{min}=8\Leftrightarrow x=1\\ B=\left(x+3\right)^2-12\ge-12\\ B_{min}=-12\Leftrightarrow x=-3\\ C=x^2-4x+3+9=\left(x-2\right)^2+8\ge8\\ C_{min}=8\Leftrightarrow x=2\\ E=-\left(x+2\right)^2+11\le11\\ E_{max}=11\Leftrightarrow x=-2\\ F=9-4x^2\le9\\ F_{max}=9\Leftrightarrow x=0\)

30 tháng 9 2018

a)  

\(B=4x^2+4x+2\)

\(=4x^2+4x+1+1\)

\(=\left(2x+1\right)^2+1\)

Nhận thấy:   \(\left(2x+1\right)^2\ge0\)

=>   \(\left(2x+1\right)^2+1>0\)

hay B luôn dương

7 tháng 7 2019

a)

A=\(x^2+5x+7=x^2+2.x.\frac{5}{2}+\frac{25}{4}-\frac{25}{4}+7=\left(x+\frac{5}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

C=\(3x^2-6x+5=\left[\left(\sqrt{3}x\right)^2-2.\sqrt{3}x.\sqrt{3}+\left(\sqrt{3}\right)^2\right]-\left(\sqrt{3}\right)^2+5\ge2 \)

b)

C=\(-x^2+4x-5=-\left(x^2-4x+5\right)=-\left(x^2-4x+4+1\right)=-\left[\left(x-2\right)^2+1\right]\)

Ta có :\(\left(x-2\right)^2+1\ge1\Leftrightarrow-\left[\left(x-2\right)^2+1\right]\le\)-1

29 tháng 6 2016

nhấn vào đọc thêm mới hiện câu hỏi

6 tháng 7 2019

a, Từ x = 7 - 4 3  tìm được  x = 2 - 3 . Thay vào Q và tính ta được Q =  3 - 3 1 + 3

b, P =  3 x + 3 9 - x

c, Tìm được  M = P Q = - 3 x + 3

Giải  M ≥ - 2 3  ta tìm được  9 4 ≤ x ≠ 9

d, Tìm được A =  x + 7 x + 3

Ta có A = x + 1 + 6 x + 3 ≥ 2 x + 6 x + 3 = 2

Từ đó đi đến kết luận A m i n = 2 => x = 1

* Cách khác: A = x + 7 x + 3 = x - 3 + 16 x + 3

=  x + 3 + 16 x + 3 - 6 ≥ 2 16 - 6 = 2

=> Kết luận