Tìm số nguyên x biết:
(4x - 1) : (2x + 3)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(2x-3.\left(2x+1\right)=4x-5.\left(x-3\right)\) )
\(\Leftrightarrow2x-6x-3-4x+5x-15=0\)
\(\Leftrightarrow-3x-18x=0\)
\(\Leftrightarrow x=-6\)
hãy k nếu bạn thấy đây là câu tl đúng :)
chúc bạn hok tốt :P
=>4x-2+5 chia hết cho 2x-1
=>\(2x-1\in\left\{1;-1;5;-5\right\}\)
=>\(x\in\left\{1;0;3;-2\right\}\)
a) \(\frac{-x}{2}+\frac{2x}{3}+x+\frac{1}{4}+2x+\frac{1}{6}=\frac{3}{8}.\)
\(\frac{-x}{2}+\frac{2x}{3}+3x+\frac{5}{12}=\frac{3}{8}\)
\(x.\left(-\frac{1}{2}+\frac{2}{3}+3\right)+\frac{5}{12}=\frac{3}{8}\)
\(x\cdot\frac{19}{6}=-\frac{1}{24}\)
x = -1/76
b) \(\frac{3}{2x+1}+\frac{10}{4x+2}-\frac{6}{6x+3}=\frac{12}{26}\)
\(\frac{3}{2x+1}+\frac{2.5}{2.\left(2x+1\right)}-\frac{2.3}{3.\left(2x+1\right)}=\frac{6}{13}\)
\(\frac{3}{2x+1}+\frac{5}{2x+1}-\frac{2}{2x+1}=\frac{6}{13}\)
\(\frac{3+5-2}{2x+1}=\frac{6}{13}\)
\(\frac{6}{2x+1}=\frac{6}{13}\)
=> 2x + 1 = 13
2x = 12
x = 6
\(1.\frac{4x+1}{3x-2}=-\frac{5}{4}\)
\(\Rightarrow\left(4x+1\right)\times4=\left(-5\right)\times\left(3x-2\right)\)
\(16x+4=\left(-15x\right)+10\)
\(16x+15x=10-4\)
\(31x=6\)
\(x=\frac{6}{31}\)
Vậy \(x\in\left\{\frac{6}{31}\right\}\)
\(2.\frac{x+5}{-7}=\frac{2x+3}{4}\)
\(\Rightarrow\left(x+5\right)\times4=\left(2x+3\right)\times\left(-7\right)\)
\(4x+20=\left(-14x\right)+\left(-21\right)\)
\(4x+14x=\left(-21\right)-20\)
\(18x=-41\)
\(x=-\frac{41}{18}\)
Vậy \(x\in\left\{-\frac{41}{18}\right\}\)
a) -45 : ( 3x - 17 ) = 32
3x - 17 = -45 : 9
3x - 17 = -5
3x = 12
x = 4
b) \(\left(2x-8\right)\left(-2x\right)=0\)
\(\Rightarrow\orbr{\begin{cases}2x-8=0\\-2x=0\end{cases}}\)
\(\Rightarrow\orbr{\begin{cases}x=4\\x=0\end{cases}}\)
Vậy.....
a)\(\text{ 4x - 15 = -75 - x}\)
\(4x-15+75+x=0\)
\(5x+60=0\)
\(5x=-60\)
\(x=-14\)
Vậy....
Thêm dấu suy ra trc mỗi dòng nha
Học tốt
a) \(P=\dfrac{2x+5}{x+3}\inℤ\left(x\inℤ;x\ne-3\right)\)
\(\Rightarrow2x+5⋮x+3\)
\(\Rightarrow2x+5-2\left(x+3\right)⋮x+3\)
\(\Rightarrow2x+5-2x-6⋮x+3\)
\(\Rightarrow-1⋮x+3\)
\(\Rightarrow x+3\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-4;-2\right\}\)
b) \(P=\dfrac{3x+4}{x+1}\inℤ\left(x\inℤ;x\ne-1\right)\)
\(\Rightarrow3x+4⋮x+1\)
\(\Rightarrow3x+4-3\left(x+1\right)⋮x+1\)
\(\Rightarrow3x+4-3x-3⋮x+1\)
\(\Rightarrow1⋮x+1\)
\(\Rightarrow x+1\in\left\{-1;1\right\}\)
\(\Rightarrow x\in\left\{-2;0\right\}\)
c) \(P=\dfrac{4x-1}{2x+3}\inℤ\left(x\inℤ;x\ne-\dfrac{3}{2}\right)\)
\(\Rightarrow4x-1⋮2x+3\)
\(\Rightarrow4x-1-2\left(2x+3\right)⋮2x+3\)
\(\Rightarrow4x-1-4x-6⋮2x+3\)
\(\Rightarrow-7⋮2x+3\)
\(\Rightarrow2x+3\in\left\{-1;1;-7;7\right\}\)
\(\Rightarrow x\in\left\{-2;-1;-5;2\right\}\)
a) P=\(\dfrac{2x+5}{x+3}=\dfrac{2\left(x+3\right)-2}{x+3}=\dfrac{2\left(x+3\right)}{x+3}-\dfrac{2}{x+3}=2-\dfrac{2}{x+3}\)
để \(P\inℤ\) thì \(\dfrac{2}{x+3}\inℤ\) hay 2 ⋮ (x-3) ⇒x+3 ϵ Ư2= (2,-2,1,-1)
ta có bảng sau:
x+3 | 2 | -2 | 1 | -1 |
x | -1 | -5 | -2 | -4 |
Vậy x \(\in-1,-2,-5,-4\)