với x > 1 biểu thức \(A=5x+\frac{180}{x-1}\)
đạt giá trị nhỏ nhất khi x bằng bao nhiêu?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5=60+5=65\)
a: \(P=\dfrac{x+\sqrt{x}+1+11\sqrt{x}-11+34}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}:\dfrac{x+\sqrt{x}+1-x+1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
\(=\dfrac{x+12\sqrt{x}+24}{\sqrt{x}+2}\)
b: Thay \(x=3-2\sqrt{2}\) vào P, ta được:
\(P=\dfrac{3-2\sqrt{2}+12\left(\sqrt{2}-1\right)+24}{\sqrt{2}-1+2}\)
\(=\dfrac{27-2\sqrt{2}+12\sqrt{2}-12}{\sqrt{2}+1}=5+5\sqrt{2}\)
cách 1:A= 5x + 180/(x-1)
=5(x-1) +180/(x-1) + 5 >= 2√(5(x-1)*180/(x-1)) +5 = 65
( Chú ý kết hợp vs điều kiện x>1)
Vậy A(min)= 65
<=> 5(x-1) -180/(x-1) =0
<=> x² - 2x -35 =0
<=> x=7 or x=-5( KTm)
cách 2:có 5x + 180 / (x-1) = 5(x-1) + 180 / (x-1) +5
vì x>1 => 5(x-1)>0 ; 180/(x-1) có nghĩa và >0
áp dụng bất đẳng thức côsi cho 2 số k âm ta có
5(x-1) + 180/(x-1) >= 2căn2[5(x-1). 180/(x-1) ]=60
=> 5(x-1) + 180 /(x-1) +5 >=60+5=65
dấu = xảy ra <=> 5(x-1) = 180/(x-1)
<=> 5 (x-1)^2 = 180
<=>......
<=> x = 7( thỏa mãn đk)
hoặc x=-5( loại )
vậy min <=> x = 7
chúc bạn học tốt
\(=x^2+2.x\cdot\frac{\sqrt{3}}{2}+\frac{3}{4}+\frac{1}{4}=\left(x+\frac{\sqrt{3}}{4}\right)^2+\frac{1}{4}\)
Vậy GTNN là 1/4 khi \(x+\frac{\sqrt{3}}{2}=0\Rightarrow x=-\frac{\sqrt{3}}{2}\)
cô-si là ra nhé GTNN =65 khi x=7
\(A=5x+\frac{180}{x-1}=5\left(x-1\right)+\frac{180}{x-1}+5\ge2\sqrt{5\left(x-1\right).\frac{180}{x-1}}+5\)