TÌM GIÁ TRỊ NHỎ NHẤT CỦA : | x- 3 | + 5
GIÚP NHÉ !
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a)` Cho `3x+6=0`
`=>3x=-6`
=>x=-2`
Vậy nghiệm của đa thức là `x=-2`
`b)` Cho `2x^2-3x=0`
`=>x(2x-3)=0`
`@TH1:x=0`
`@TH2:2x-3=0=>2x=3=>x=3/2`
Vậy nghiệm của đa thức là `x=0` hoặc `x=3/2`
____________________________________________
Câu `2:`
Vì `(x+1)^2 >= 0 AA x`
`=>2(x+1)^2 >= 0 AA x`
`=>2(x+1)^2-5 >= -5 AA x`
Hay `A >= -5 AA x`
Dấu "`=`" xảy ra khi `(x+1)^2=0=>x+1=0=>x=-1`
Vậy `GTN N` của `A` là `-5` khi `x=-1`
Câu 1:
a, Cho 2x+6=0
2x = 0-6=-6
x = -6 :2=-3
Vậy đa thức trên có nghiệm là x=-3
b, Cho đa thức 2x2-3x=0
2xx-3x=0
x(2x-3x)=0
1,x=0
2,2x-3x=0
x(2-3)=0
-x =0
=>x=0
Vậy đa thức tên có nghiệm là x=0
Câu 2:
Để đa thức A có giá trị nhỏ nhất thì 2(x+1)2-5 phải bé nhất;
mà 2(x-1)2≥0
Dấu bằng chỉ xuất hiện khi và chỉ khi :
2(x-1)2=0
(x-1)2=0:2=0=02
=>x-1=0
x =0+1=1
=> A = 2(1-1)2-5
A =2.0-5
A 0-5 =-5
Vậy A có giá trị bé nhất là -5 với x= 1
Gọi \(A=3.\left|x+\frac{-2}{5}\right|+\frac{5}{2}\)
Ta có : \(\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|\ge0\)
\(3.\left|x+\frac{-2}{3}\right|+\frac{5}{2}\ge\frac{5}{2}\)
\(\Rightarrow Min_A=\frac{5}{2}\)
\(\Leftrightarrow3.\left|x+\frac{-2}{3}\right|=0\)
\(\Leftrightarrow\left|x+\frac{-2}{5}\right|=0\)
\(\Leftrightarrow x+\frac{-2}{5}=0\)
\(\Leftrightarrow x=\frac{2}{5}\)
`Answer:`
1.
Do \(\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|\ge0\forall x\)
\(\Rightarrow3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\ge\frac{5}{2}\forall x\)
Dấu "=" xảy ra khi \(\left|x-\frac{2}{5}\right|=0\Leftrightarrow x-\frac{2}{5}=0\Leftrightarrow x=\frac{2}{5}\)
Vậy \(3.\left|x-\frac{2}{5}\right|+\frac{5}{2}\) đạt giá trị nhỏ nhất \(=\frac{5}{2}\Leftrightarrow x=\frac{2}{5}\)
2.
Do \(\left|x-\frac{1}{2}\right|\ge0\forall x\)
\(\Rightarrow\left|x-\frac{1}{2}\right|+\frac{3}{4}\ge\frac{3}{4}\forall x\)
\(\Rightarrow A\ge\frac{3}{4}\)
Dấu "=" xảy ra khi \(\left|x-\frac{1}{2}\right|=0\Leftrightarrow x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}\)
Vậy giá trị nhỏ nhất của \(A=\frac{3}{4}\Leftrightarrow x=\frac{1}{2}\)
tìm giá trị của x để biểu thức A=|3x-3|+||x-4|-3| có giá trị nhỏ nhất,tìm giá trị đó.
\(A=\left(x-3\right)^2+\left(x+1\right)^2\)
\(\Rightarrow A=x^2-6x+9+x^2+2x+1\)
\(\Rightarrow A=2x^2-4x+10\)
\(\Rightarrow A=2\left(x^2-2x+5\right)\)
\(\Rightarrow A=2\left[\left(x^2-2x+1\right)+4\right]\)
\(\Rightarrow A=2\left(x-1\right)^2+8\)
Vì \(2\left(x-1\right)^2\ge0\forall x\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
\(\Rightarrow A=2\left(x-1\right)^2+8\ge8\)
Dấu "=" xảy ra \(\Leftrightarrow x=1\)
Vậy \(A_{min}=8\Leftrightarrow x=1\)
\(A=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\\ A_{min}=4\Leftrightarrow x=1\\ B=2\left(x^2-3x\right)=2\left(x^2-2\cdot\dfrac{3}{2}x+\dfrac{9}{4}\right)-\dfrac{9}{2}\\ B=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\\ B_{min}=-\dfrac{9}{2}\Leftrightarrow x=\dfrac{3}{2}\\ C=-\left(x^2-4x+4\right)+7=-\left(x-2\right)^2+7\le7\\ C_{max}=7\Leftrightarrow x=2\)
a,\(A=x^2-2x+5=\left(x^2-2x+1\right)+4=\left(x-1\right)^2+4\ge4\)
Dấu "=" \(\Leftrightarrow x=-1\)
b,\(B=2\left(x^2-3x\right)=2\left(x^2-3x+\dfrac{9}{4}\right)-\dfrac{9}{2}=2\left(x-\dfrac{3}{2}\right)^2-\dfrac{9}{2}\ge-\dfrac{9}{2}\)
Dấu "=" \(\Leftrightarrow x=\dfrac{3}{2}\)
c,\(=C=-\left(x^2-4x-3\right)=-\left[\left(x^2-4x+4\right)-7\right]=-\left(x-2\right)^2+7\le7\)
Dấu "=" \(\Leftrightarrow x=2\)
Ta có
/x-3/\(\ge0\)
=>/x-3/ + 5\(\ge5\)
Dấu ''='' xảy ra <=>x=3
Tick cho mình nha bạn.Nhân dịp năm mới chúc bạn mạnh khoẻ,vui vẻ,học giỏi nha.
Là 5
Tick nha Thanh Nguyễn Vinh