A) 2 ⁸/⁶ + 3⁶/8 =?
B) 2⅝ - ⅖=?
Cần gấp ạ
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(\dfrac{1}{4}-3\left(\dfrac{1}{12}+\dfrac{3}{8}\right)=\dfrac{1}{4}-\dfrac{1}{4}-\dfrac{9}{8}=-\dfrac{9}{8}\)
b) \(\left(-\dfrac{2}{3}+\dfrac{3}{5}\right):\dfrac{1}{50}-30=\left(-\dfrac{2}{3}+\dfrac{3}{5}\right).50-30=-\dfrac{100}{3}+30-30=-\dfrac{100}{3}\)
a)
\(=\frac{8^3}{\left(-8\right)^{-5}}=\frac{8^3}{-\frac{1}{8^5}}=8^3.-\left(8\right)^5=-8^8\)
b)
\(=\frac{15x^2y^2}{5xy^2}=3x\)
\(A=\frac{\left[\left(25-1\right):1+1\right]\left(25+1\right)}{2}=325.\)
\(B=\frac{\left[\left(51-3\right):2+1\right]\left(51+3\right)}{2}=675\)
\(C=\frac{\left[\left(81-1\right):4+1\right]\left(81+1\right)}{2}=861\)
a) \(2^n=8\)
\(\Rightarrow2^n=2^3\)
\(\Rightarrow n=3\)
b) \(5^{n+1}=125\)
\(\Rightarrow5^{n+1}=5^3\)
\(\Rightarrow n+1=3\)
\(\Rightarrow n=3-1=2\)
c) Mình không rõ đề:
d) \(2\cdot7^{n-1}+3=101\)
\(\Rightarrow2\cdot7^{n-1}=101-3\)
\(\Rightarrow2\cdot7^{n-1}=98\)
\(\Rightarrow7^{n-1}=\dfrac{98}{2}\)
\(\Rightarrow7^{n-1}=49\)
\(\Rightarrow7^{n-1}=7^2\)
\(\Rightarrow n-1=2\)
\(\Rightarrow n=1+2=3\)
e) \(3\cdot5^{2n+1}-6^2=339\)
\(\Rightarrow3\cdot5^{2n+1}=339+36\)
\(\Rightarrow3\cdot5^{2n+1}=375\)
\(\Rightarrow5^{2n+1}=125\)
\(\Rightarrow5^{2n+1}=5^3\)
\(\Rightarrow2n+1=3\)
\(\Rightarrow2n=2\)
\(\Rightarrow n=\dfrac{2}{2}=1\)
a) \(a^2\cdot a^3\cdot a^7\cdot b^2\cdot b\)
\(=\left(a^2\cdot a^3\cdot a^7\right)\cdot\left(b^2\cdot b\right)\)
\(=a^{12}\cdot b^3\)
b) \(b^6\cdot b\cdot c^7\cdot c^8\)
\(=\left(b^6\cdot b\right)\cdot\left(c^7\cdot c^8\right)\)
\(=b^7\cdot c^{15}\)
c) \(a^8\cdot a^9\cdot a\cdot c\cdot c^{20}\)
\(=\left(a^8\cdot a^9\cdot a\right)\cdot\left(c\cdot c^{20}\right)\)
\(=a^{18}\cdot c^{21}\)
d) \(a^2\cdot a^3\cdot b^4\cdot c\cdot c^3\)
\(=\left(a^2\cdot a^3\right)\cdot b^4\cdot\left(c\cdot c^3\right)\)
\(=a^5\cdot b^4\cdot c^4\)
a) Kiểm tra lại nhé
b) \(b^6.b^7.c^8\)
\(=b^{6+7}.c^8=b^{13}.c^8\)
c) \(a^8.a^9.a.c.c^{20}\)
\(=a^{8+9+1}.c^{1+20}\)
\(=a^{18}.c^{21}\)
d) \(a^2.a^3.b^4.c.c^3\)
\(=a^{2+3}.b^4.c^{1+3}\)
\(=a^5.b^4.c^4\)
\(#WendyDang\)
Lời giải:
a)
$8^3:(-8)^{-5}=8^3.(-8)^5=8^3.(-8^5)=-8^3.8^5=-8^{3+5}=-8^{13}$
b)
$x^3y^4:(x^3y)=x^{3-3}.y^{4-1}=x^0.y^3=y^3$
c)
$5x^2y^4:(10x^2y)=(5:10).(x^2:x^2)(y^4:y)=\frac{1}{2}.1.y^3=\frac{1}{2}y^3$
d)
$\frac{3}{4}(xy)^3:(\frac{-1}{2}x^2y^2)$
$=(\frac{3}{4}: \frac{-1}{2})(x^3:x^2).(y^3:y^2)$
$=\frac{-3}{2}xy$
Hihi mình cũng học lớp 9, để mình giúp cậu nha!
a) \(\sqrt{3-2\sqrt{2}}+\sqrt{9+4\sqrt{2}}=\sqrt{\left(\sqrt{2}-1\right)^2}+\sqrt{\left(1+\sqrt{8}\right)^2}\)
\(=\left|\sqrt{2}-1\right|+\left|1+\sqrt{8}\right|=\sqrt{2}-1+1+\sqrt{8}=\sqrt{2}+2\sqrt{2}=3\sqrt{2}\)
b) \(\sqrt{8-2\sqrt{7}}-\sqrt{8+2\sqrt{7}}=\sqrt{\left(\sqrt{7}-1\right)^2}-\sqrt{\left(1+\sqrt{7}\right)^2}\)
\(=\left|\sqrt{7}-1\right|-\left|1+\sqrt{7}\right|=\sqrt{7}-1-1-\sqrt{7}=-2\)
c) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(\sqrt{2}+3\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=\left|\sqrt{2}+3\right|-\left|3-\sqrt{2}\right|=\sqrt{2}+3-3+\sqrt{2}=2\sqrt{2}\)
(Nhớ click cho mình với nhoa!)
Bài 9 : Tìm x, biết :
a, (x - 2)(x - 3) + (x - 2) - 1 = 0
\(\Leftrightarrow\left(x-2\right)\left(x-3+1\right)-1=0\)
\(\Leftrightarrow\left(x-2\right)^2-1=0\)
\(\Leftrightarrow\left(x-2+1\right)\left(x-2-1\right)=0\)
\(\Leftrightarrow\left(x-1\right)\left(x-3\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\x-3=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=3\end{matrix}\right.\)
Vậy x ={1; 3}
b, (x + 2)2 - 2x(2x + 3) = (x + 1)2
\(\Leftrightarrow\left(x+2\right)^2-\left(x+1\right)^2-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(x+2+x+1\right)\left(x+2-x-1\right)-2x\left(2x+3\right)=0\)
\(\Leftrightarrow2x+3-2x\left(2x+3\right)=0\)
\(\Leftrightarrow\left(2x+3\right)\left(1-2x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}2x+3=0\\1-2x=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=-\frac{3}{2}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{-\frac{3}{2};\frac{1}{2}\right\}\)
c, 6x3 + x2 = 2x
\(\Leftrightarrow6x^3+x^2-2x=0\)
\(\Leftrightarrow x\left(6x^2+x-2\right)=0\)
\(\Leftrightarrow x\left(6x^2+4x-3x-2\right)=0\)
\(\Leftrightarrow x\left[2x\left(3x+2\right)-\left(3x+2\right)\right]=0\)
\(\Leftrightarrow x\left(3x+2\right)\left(2x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x+2=0\\2x-1=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-\frac{2}{3}\\x=\frac{1}{2}\end{matrix}\right.\)
Vậy \(x=\left\{0;-\frac{2}{3};\frac{1}{2}\right\}\)