K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 11 2021

a) Theo đề ra: \(\hept{\begin{cases}a+b=p\left(1\right)\\a-b=q\left(2\right)\end{cases}}\)

Trừ các vế tương ứng (1) và (2)

\(\left(a+b\right)-\left(a-b\right)=p-q\)

\(\Rightarrow a+b-a+b=p-q\)

\(\Rightarrow b=\frac{p-q}{2}\) \(\left(11\right)\)

Cộng các vế tương ứng (1) và (2)

\(\left(a+b\right)+\left(a-b\right)=p+q\)

\(\Rightarrow a+b+a-b=p-q\)

\(\Rightarrow a=\frac{p+q}{2}\left(22\right)\)

Từ (11) và (22) ta có:

\(a.b=\frac{p+q}{2}.\frac{p-q}{2}\)

\(\Rightarrow ab=\frac{p^2-q^2}{4}\)

b) Ta có: \(a^2+b^2=\left(a^2+2ab+b^2-2ab\right)=\left(a+b\right)^2-2ab\)

Mà đề ra: \(a+b=p\) và theo phần a) ta có \(ab=\frac{p^2-q^2}{4}\)

\(a^2+b^2=p^2-2.\frac{p^2-q^2}{4}\Rightarrow a^2-b^2=\frac{p^2-q^2}{2}\)

\(a^3+b^3=\left(a+b\right).\left(a^2-ab+b^2\right)\)

Mà đề ra: \(a+b=p\) và \(ab=\frac{p^2-q^2}{4}\) và \(a^2+b^2=\frac{p^2-q^2}{2}\)

\(a^3+b^3=p.\left(\frac{p^2+q^2}{2}-\frac{p^2-q^2}{4}\right)\Rightarrow a^3+b^3=p.\frac{p^2+3q^2}{4}\Rightarrow a^3+b^3=\frac{p^3+3pq^2}{4}\)

23 tháng 6 2019

\(a+b=p;a-b=q\)

\(\Rightarrow\hept{\begin{cases}\left(a+b\right)+\left(a-b\right)=p+q\\\left(a+b\right)-\left(a-b\right)=p-q\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}2a=p+q\\2b=p-q\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}a=\frac{p+q}{2}\\b=\frac{p-q}{2}\end{cases}}\)

\(\Rightarrow a\times b=\frac{p+q}{2}\times\frac{p-q}{2}\)

\(\Rightarrow a\times b=\frac{\left(p+q\right)\left(p-q\right)}{4}\)

\(\Rightarrow a\times b=\frac{p^2-q^2}{4}\)

23 tháng 6 2019

thay vào là đc theo cach cơ bắp

8 tháng 6 2017

a) \(B=\left[\frac{21}{\left(x+3\right)\left(x-3\right)}+\frac{x-4}{x-3}-\frac{\left(x-1\right)}{x+3}\right]:\left(\frac{x+3-1}{x+3}\right)\)

ĐK: \(\hept{\begin{cases}x\ne3\\x\ne-3\end{cases}}\)

\(=\left[\frac{21+x-4-\left(x-1\right)\left(x-3\right)}{\left(x-3\right)\left(x+3\right)}\right]:\left(\frac{x+2}{x+3}\right)\)

\(=\left[\frac{21+x-4-x^2+3x+x-3}{\left(x+3\right)\left(x-3\right)}\right]\times\left(\frac{x+3}{x+2}\right)\)

\(=\left(\frac{-x^2+5x+14}{x-3}\right)\left(\frac{1}{x+2}\right)\)

\(=\frac{-\left(x^2+2x-7x-14\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{-\left(x+2\right)\left(x-7\right)}{\left(x-3\right)\left(x+2\right)}\)

\(=\frac{7-x}{x-3}\)

b) \(\Rightarrow\orbr{\begin{cases}2x+1=5\\2x+1=-5\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}x=2\\x=-3\end{cases}}\)

Mà \(x\ne-3\)

\(\Rightarrow x=2\)

Thế \(x=2\)vào B ta được:

\(B=\frac{7-2}{2-3}=-5\)

c) \(B=\frac{7-x}{x-3}=\frac{-3}{5}\)

\(\Leftrightarrow5\left(7-x\right)=-3\left(x-3\right)\)

\(\Leftrightarrow35-5x+3x-9=0\)

\(\Leftrightarrow-2x=-26\)

\(\Leftrightarrow x=13\)

Vậy để \(B=\frac{-3}{5}\)thì \(x=13\)

d) B<0\(\Rightarrow\frac{7-x}{x-3}< 0\)

TH1: \(\hept{\begin{cases}7-x< 0\\x-3>0\end{cases}\Rightarrow\hept{\begin{cases}x>7\\x>3\end{cases}\Rightarrow}x>7}\)

TH2: \(\hept{\begin{cases}7-x>0\\x-3< 0\end{cases}\Rightarrow\hept{\begin{cases}x< 7\\x< 3\end{cases}\Rightarrow}x< 3}\)

Để B<0 thì x>7 hoặc x<3

8 tháng 6 2017

a) \(B=\left(\frac{21}{x^2-9}-\frac{x-4}{3-x}-\frac{x-1}{3+x}\right):\left(1-\frac{1}{x+3}\right)\)         ĐKXĐ: x khác =-3; x khác -2

\(B=\frac{21+x^2-x-12-x^2+4x-3}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3x+6}{\left(x+3\right)\left(x-3\right)}:\frac{x+2}{x+3}\)

\(B=\frac{3\left(x+2\right)}{\left(x+3\right)\left(x-3\right)}\cdot\frac{x+3}{x+2}\)

\(B=\frac{3}{x-3}\)

b) bước đầu tiên ta phải tìm x:

 \(\left|2x+1\right|=5\)

TH1: 2x+1=5                      TH2: 2x+1=-5

            2x=4                                 2x=-6

          x=2 (nhận)                             x=-3 (loại)

thay x=2 vào biểu thức B, ta được:

\(B=\frac{3}{2-3}=\frac{3}{-1}=-3\)

vậy B=-3 tại x=2

c) Để \(B=-\frac{3}{5}\)thì \(\frac{3}{x-3}=-\frac{3}{5}\)

\(\Leftrightarrow-3\left(x-3\right)=15\)

\(\Leftrightarrow x-3=-5\)

\(\Leftrightarrow x=-2\)

vậy \(x=-2\)thì \(B=-\frac{3}{5}\)

d) để B<0 thì \(\frac{3}{x-3}< 0\Leftrightarrow x-3< 0\Leftrightarrow x< 3\)

vậy để B<0 thì x phải < 3 và x khác -3

22 tháng 11 2017

giup minh voi cac ban

16 tháng 5 2017

a)Để B=\(\dfrac{7n-8}{2n-3}\)

Thì 7n-8 chia hết cho 2n-3

\(\Rightarrow\)7n-3-5 chia hết 2n-3

\(\Rightarrow\)5 chia hết 2n-3

Giá trị lớn nhất của n khi 2n-3\(\in\)

Ư(5)và là Ư lớn nhất

\(\Rightarrow\)n=(5+3):2=4

b) cũng tương tự nha bạn

a) \(A=31-\sqrt{2x+7}\)

Ta có: \(-\sqrt{2x+7}\le0\forall x\)

\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)

Vậy MIN A = 31

24 tháng 4 2020

a) Vì \(\left|2x+8\right|\ge0\forall x\)

   \(\Rightarrow\left|2x+8\right|-3\ge-3\forall x\)

   \(\Rightarrow A_{min}=-3\)

 Dấu "=" xảy ra khi: \(2x+8=0\)

                         \(\Leftrightarrow2x=-8\)

                         \(\Leftrightarrow x=-4\left(TM\right)\)

Vậy \(A_{min}=-3\)\(\Leftrightarrow\)\(x=-4\)

6 tháng 9 2018

\(A=\left(x-1\right)\left(x+2\right)\left(x+3\right)\left(x+6\right)\)

\(\Leftrightarrow A=\left[\left(x-1\right)\left(x+6\right)\right]\left[\left(x+2\right)\left(x+3\right)\right]\)

\(\Leftrightarrow A=\left(x^2-x+6x-6\right)\left(x^2+2x+3x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x-6\right)\left(x^2+5x+6\right)\)

\(\Leftrightarrow A=\left(x^2+5x\right)^2-36\ge-36\forall x\)

Dấu " = " xảy ra

\(\Leftrightarrow x^2+5x=0\Leftrightarrow x\left(x+5\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x+5=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

Vậy GTNN của A là : \(-36\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\)

16 tháng 2 2020

a)Vì \(\hept{\begin{cases}\left|x+19\right|\ge0;\forall x,y\\\left|y-5\right|\ge0;\forall x,y\end{cases}\Rightarrow\left|x+19\right|+\left|y-5\right|\ge0;\forall x,y}\)

\(\Rightarrow\left|x+19\right|+\left|y-5\right|+1890\ge1890;\forall x,y\)

Dấu"="xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x+19\right|=0\\\left|y-5\right|=0\end{cases}\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}}\)

Vậy Min A=1890 \(\Leftrightarrow\hept{\begin{cases}x=-19\\y=5\end{cases}}\)

b)Vì \(\hept{\begin{cases}-\left|x-7\right|\le0;\forall x,y\\-\left|y+13\right|\le0;\forall x,y\end{cases}}\)\(\Rightarrow-\left|x-7\right|-\left|y+13\right|\le0;\forall x,y\)

\(\Rightarrow-\left|x-7\right|-\left|y+13\right|+1945\le1945;\forall x,y\)

Dấu"="Xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|x-7\right|=0\\\left|y+13\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)

Vậy Max \(B=1945\Leftrightarrow\hept{\begin{cases}x=7\\y=-13\end{cases}}\)