Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a3 - b3 - c3 = 3abc
=> a > b ; b > c
=> a + a > b + c
=> 2a > b + c
=> 4a > 2(b + c)
=> 4 > a
Mà a2 = 2(b + c)
=> a chia hết cho 2
=> a = 2
(Lập luận dựa vào các ý trên)
=> b = c = 1
Cho phan so A = n+1/n-3 (nCZ)
a) Tim cac gia tri cua n de A la phan so
b) Tim n de A co gia tri nguyen
a) Để A = \(\frac{n+1}{n-3}\) là phân số thì \(n-3\ne0\)hay\(n\ne3\)
b) Để A là số nguyên thì:
\(n+1⋮n-3\)
mà \(n-3⋮n-3\)
\(\Rightarrow\left(n+1\right)-\left(n-3\right)⋮n-3\) hay\(4⋮n-3\)
\(\Rightarrow n-3\inƯ_{\left(4\right)}\)
\(\Rightarrow n\in\){4;2;5;1;7;-1}
a) ta có: \(B=\frac{n}{n-3}=\frac{n-3+3}{n-3}=\frac{n-3}{n-3}+\frac{3}{n-3}\)
Để B là số nguyên
\(\Rightarrow\frac{3}{n-3}\in z\)
\(\Rightarrow3⋮n-3\Rightarrow n-3\inƯ_{\left(3\right)}=\left(3;-3;1;-1\right)\)
nếu n -3 = 3 => n= 6 (TM)
n- 3 = - 3 => n = 0 (TM)
n -3 = 1 => n = 4 (TM)
n -3 = -1 => n = 2 (TM)
KL: \(n\in\left(6;0;4;2\right)\)
b) đề như z pải ko bn!
ta có: \(C=\frac{3n+5}{n+7}=\frac{3n+21-16}{n+7}=\frac{3.\left(n+7\right)-16}{n+7}=\frac{3.\left(n+7\right)}{n+7}-\frac{16}{n+7}=3-\frac{16}{n+7}\)
Để C là số nguyên
\(\Rightarrow\frac{16}{n+7}\in z\)
\(\Rightarrow16⋮n+7\Rightarrow n+7\inƯ_{\left(16\right)}=\left(16;-16;8;-8;4;-4;2;-2;1;-1\right)\)
rùi bn thay giá trị của n +7 vào để tìm n nhé ! ( thay như phần a đó)