Cho năm điểm G, H, I, K, L sao cho: ba điểm G, H, I thẳng hàng; ba điểm H, I, K thẳng hàng; ba điểm I, K, L không thẳng hàng.
Hỏi ba điểm G, I, L có thẳng hàng hay không? Vì sao?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bốn điểm G, H, I, K có thẳng hàng vì cả bốn điểm thuộc đường thẳng HI
a) Vì BC=2AB nên:\(\widehat{ABC}=2\widehat{ACB}\) mà \(\Delta ABC\) vuông nên \(\widehat{ABC} +\widehat{ACB}=90^o\)
\(\Rightarrow\)\(\widehat{ABC}=60^o,\widehat{ACB}=30^o\)
Suy ra:
\(\widehat{ABD}=20^o,\widehat{ACE}=10^o,\widehat{ECB}=20^o\).
C thuộc đường trung trực của của FH và FG nên CH=CG. Tam giác CGH cân tại C.
\(\widehat{GCH}=\widehat{GCF}+\widehat{FCH}=2\widehat{ACB}=60^o\)
Vậy tam giác GCH là tam giác đều, Do đó \(\widehat{CHG}=60^o(1)\)
\(\Delta CDH=\Delta CDF\)(c-g-c),suy ra \(\widehat{CHD}=\widehat{CFD}\)
tam giác vuông ABD vuông ở A có \(\widehat{ABD}=20^o\) nên \(\widehat{ADB}=70^o\) , suy ra \(\widehat{FDC}=110^o\) vì thế \(\widehat{DFC}=180^o-110^o-10^o=60^o\).vậy \(\widehat{CHD }=60^o(2)\)
từ (1) và (2) ta suy ra ba điểm M,D,C thẳng hàng
b) Gọi S là giao điểm các phân giác của tamgiacs BFC.ta dễ dàng chwungs minh được \(\widehat{EFB}=\widehat{BFS}=\widehat{SFC}=\widehat{DFC}=60^o\).
\(\Delta BFE=\Delta BFS(g-c-g)\) suy ra FE=FS(hai cạnh tương ứng)
\(\Delta CFS=\Delta CFD(g-c-g)\) suy ra FS=FD
từ hai chứng minh trên suy ra FE=FD.vậy tam giác EFD cân ở F
b) Xét Δ BCD có: O là trung điểm của BD
F là trung điểm của BC
⇒ OF là đường trung bình của ΔBDC ⇒ OF // DC mà DC // AB nên OF // AE
⇒ FH // BE
Mà O là trung điểm của AC nên H là trung điểm của EC hay AH là trung tuyến của ΔAEC. Mà AH cắt EO tại G nên G là trong tâm của ΔAEC ⇒ A, G, H thẳng hàng.
Ba điểm G, I, L không thẳng hàng vì hai điểm G, I thuộc đường thẳng HI mà điểm L không thuộc đường thẳng HI