tìm dạng chung của số tự nhiên a sao cho chia 4;5;6 lần lượt có số dư là 3;4;5 và chia hết cho 13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
gọi số cần tìm là n (100<n<999)
n-1 chia hết cho 2 => (n-1)+1 chia hết cho 2 => n+1 chia hết cho 2
n-2 chia hết cho 3 => (n-2)+2 chia hết cho 3 => n+1 chia hết cho 3
n-3 chia hết cho 2 => (n-3)+3 chia hết cho 2 => n+1 chia hết cho 4
n-4 chia hết cho 2 => (n-4)+4 chia hết cho 2 => n+1 chia hết cho 5
n-5 chia hết cho 3 => (n-5)+5 chia hết cho 3 => n+1 chia hết cho 6
=> n+1 thuộc BC(2,3,4,5,6)
Ta có
BCNN(2,3,4,5,6)=60
BC(2,3,4,5,6)=B(60)={0,60,120,......,960,1020,....}
100<n<999 => n=960-1=959
gọi số cần tìm là a.theo bài ra ta có:a chia 3;4;5;6 dư 1=>a-1 chia hết cho 3;4;5;6=>a-1 chia hết cho 60=>a-1 thuộc {0;60;120;180;240;300;...}=>a thuộc {1;61;121;181;241;301;...}vì a chia hết cho 7=>a=301vậy a=301
Vậy số tự nhiên nhỏ nhất chia hết cho 7 là 301
b, gọi số tổng quát là n, ta có:
n - 1 chia hết cho 60
=> n - 301 chia hết cho 60
Mà n chia hết cho 7
=> n - 301 chia hết cho 7
=> n - 1 chia hết cho 60.7 = 420
=> n - 1 = 420k
=> n = 420k +1 ( k thuộc N )
Vừa tuần trước học xong K cho tớ nha
dạng chung của các số tự nhiên a chia 4 dư 1;chia 5 dư 4; chia 6 dư 5;chia hết cho 13 lần lượt là:4k+1;5k+4;6k+5;13k(trong đó k thuộc N*)
a chia cho 4 dư 3 có dạng :
4k + 3
a chia cho 5 dư 4 có dạng :
5q + 4
a chia cho 6 dư 5 có dạng :
6k + 5
a chia hết cho 13 có dạng :
13k