Cho tam giác ABC với AC < AB. Trên tia đối của tia BC lấy điểm D sao cho BD = AB. Trên tia đối của tia CB lấy điểm E sao cho CE = AC. Vẽ các đonạ thẳng AD, AE.
Hãy so sánh các đoạn thẳng AD và AE.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)
+ Trong ΔABC có: góc ABC đối diện cạnh AC, góc ACB đối diện cạnh AB.
b) ΔAED có:
⇒ AE < AD hay AD > AE
(Bạn tự vẽ hình giùm)
a/ Ta có AC > AB (gt) => \(\widehat{AEB}< \widehat{ADC}\)(quan hệ giữa góc và cạnh đối diện)
b/ Ta có EC < EB => AE < AB (quan hệ giữa đường xiên và hình chiếu) (1)
và CB < CD => AB < AD (quan hệ giữa đường xiên và hình chiếu) (2)
Từ (1) và (2) => AE < AD
xét tam giác ABC có : AC < AB
=> góc ABC < góc ACB (đl)
góc ABC + góc ABD = 180
góc ACB + góc ACE = 180
=> góc ACE < góc ABD
có tam giác ACE và tam giác ABD lần lượt cân tại C và B
=> góc E = (180 - góc ACE) : 2 và góc D = (180 - góc ABD) : 2 (đl)
=> góc E > góc D
a)
+ Trong ΔABC có: góc ABC đối diện cạnh AC, góc ACB đối diện cạnh AB.
b) ΔAED có:
⇒ AE < AD hay AD > AE
a.
b. Xét ΔADE có góc ADE < góc AED (chứng minh ở phần a)
=> AE < AD (Quan hệ giữa góc - cạnh đối diện trong tam giác)
a) So sánh ˆADCADC^ và ˆAECAEC^
Ta có: AC < AB
=> ˆABC<ˆACBABC^<ACB^ (1)
Vì AC = EC => ∆AEC cân tại C
=> ˆAEC<ˆCAEAEC^<CAE^
Mà ˆACB=ˆAEC+ˆEACACB^=AEC^+EAC^ (góc ngoài tại C của ∆AEC)
=> ˆACB=2.ˆAECACB^=2.AEC^ (2)
Chứng minh tương tự : ˆABC=2ˆADCABC^=2ADC^ (3)
Từ (1), (2), (3) => 2ˆAEC=2ˆADC2AEC^=2ADC^ hay ˆAEC=ˆADCAEC^=ADC^
b) ∆AED có:
ˆAED=ˆADEAED^=ADE^ (chứng minh trên) => AD = AE
vao huong dan giai toan lop 7 tap 2 trang 63 co het
minh thu roi dam bao 100 phan tram
a, vì CA=CE(GT) =>TAM GIÁC ACE CÂN TẠI C=> GÓC CAE= GÓC AEC
b,vì AB<AC=>góc ABC>góc ACB(quan hệ giữa góc và cạnh trong 1 tam giác)
c, vì AH là đường cao => AH là đường vuông góc
TA CÓ AB=BD, AC=CE MÀ AB<AC=>BD<CE=>HD<HE(quan hệ giữa đx và hc)
ΔAED có:
⇒ AE < AD hay AD > AE