K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 1 2016

chúc bạn lại một năm mới vui vẻ

1 tháng 1 2016

mik cũng chúc các bạn một năm mới vui vẻ gặt hái nhiều thành công trong năm mới

 

 

31 tháng 12 2023

Chúc mừng năm mới!

31 tháng 12 2023

3p nx 10h đêm

3 tháng 1 2023

Em xin giải bài toán kia nhé :)

Trước hết ta có hằng đẳng thức:

\(x^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4+y^5=\left(x+y\right)^5\)

Biến đổi hằng đẳng thức trên:

\(x^5+y^5+5xy\left(x^3+2x^2y+2xy^2+y^3\right)=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left[\left(x+y\right)\left(x^2-xy+y^2\right)+2xy\left(x+y\right)\right]=\left(x+y\right)^5\)

\(\Rightarrow x^5+y^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)=\left(x+y\right)^5\) (*)

Quay lại bài toán trên:

Theo BĐT Cauchy ta có:

\(\left\{{}\begin{matrix}\sqrt{xy}\le\dfrac{x+y}{2}\left(1\right)\\2xy\le x^2+y^2\Rightarrow3xy\le x^2+xy+y^2\Rightarrow xy\le\dfrac{x^2+xy+y^3}{3}\left(2\right)\end{matrix}\right.\)

Vì cả 2 vế của BĐT (1) và (2) đều dương nên lấy \(\left(1\right).\left(2\right)\) ta được:

\(xy\sqrt{xy}\le\dfrac{1}{6}\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(\Rightarrow x^5+2023xy.xy\sqrt{xy}+y^5\le x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\left(3\right)\)

Đặt \(A=x^5+\dfrac{2023}{6}xy.\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\)

\(=\dfrac{6x^5+2023xy\left(x+y\right)\left(x^2+xy+y^2\right)+6y^5}{6}\)

\(=\dfrac{6\left[x^5+5xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\right]+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\)

Áp dụng (*) ta có:

\(A=\dfrac{6\left(x+y\right)^5+1993xy\left(x+y\right)\left(x^2+xy+y^2\right)}{6}\left(4\right)\)

Ta có: \(xy\left(x+y\right)\left(x^2+xy+y^2\right)\)

\(=\dfrac{1}{3}.3xy\left(x^2+xy+y^2\right)\left(x+y\right)\)

Theo BĐT Cauchy ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{3xy+\left(x^2+xy+y^2\right)}{2}\right]^2=\left[\dfrac{\left(x+y\right)^2+2xy}{2}\right]^2\left('\right)\)

\(xy\le\left(\dfrac{x+y}{2}\right)^2=\dfrac{\left(x+y\right)^2}{4}\left(''\right)\)

Từ (') và ('') ta có:

\(3xy\left(x^2+xy+y^2\right)\le\left[\dfrac{\left(x+y\right)^2+2.\dfrac{\left(x+y\right)^2}{4}}{2}\right]^2=\left[\dfrac{3}{4}\left(x+y\right)^2\right]^2=\dfrac{9}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^4\)

\(\Rightarrow xy\left(x+y\right)\left(x^2+xy+y^2\right)\le\dfrac{3}{16}\left(x+y\right)^5\left(5\right)\)

Từ (4), (5) ta có:

\(A\le\dfrac{6\left(x+y\right)^5+1993.\dfrac{3}{16}\left(x+y\right)^5}{6}=\dfrac{\dfrac{6075}{16}\left(x+y\right)^5}{6}=\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow A\le\dfrac{2025}{32}\left(x+y\right)^5\) hay 

\(x^5+\dfrac{2023}{6}xy\left(x+y\right)\left(x^2+xy+y^2\right)+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\left(6\right)\)

Từ (3), (6) ta có:

\(x^5+2023x^2y^2\sqrt{xy}+y^5\le\dfrac{2025}{32}\left(x+y\right)^5\)

\(\Rightarrow\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{x+y}{2}\left(1'\right)\)

Mặt khác theo BĐT Cauchy ta có:

\(\sqrt{xy}\le\dfrac{x+y}{2}\left(2'\right)\)

Vì cả 2 vế của (1') và (2') đều dương nên lấy \(\left(1'\right).\left(2'\right)\) ta được:

\(\sqrt{xy}.\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}\le\sqrt[5]{2025}.\dfrac{\left(x+y\right)^2}{4}\)

\(\Rightarrow\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(x+y\right)^2}\left(7\right)\)

CMTT ta cũng có:

\(\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(y+z\right)^2}\left(8\right)\)

\(\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\ge\dfrac{4}{\sqrt[5]{2025}.\left(z+x\right)^2}\left(9\right)\)

Lấy \(\left(7\right)+\left(8\right)+\left(9\right)\) rồi nhân mỗi vế của BĐT mới cho \(\left(x+y+z\right)^2\) ta được:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)\(\ge\dfrac{4}{\sqrt[5]{2025}}\left(x+y+z\right)^2\left[\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\right]\left(10\right)\)

Theo BĐT Cauchy ta có:

\(\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge3.\sqrt[3]{\dfrac{1}{\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2}}\)

\(\ge3.\sqrt[3]{\dfrac{1}{\left[\left(\dfrac{x+y+y+z+z+x}{3}\right)^3\right]^2}}\)

\(=3.\sqrt[3]{\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^6}}=3.\dfrac{1}{\left[\dfrac{2}{3}\left(x+y+z\right)\right]^2}=\dfrac{27}{4\left(x+y+z\right)^2}\)

\(\Rightarrow\dfrac{1}{\left(x+y\right)^2}+\dfrac{1}{\left(y+z\right)^2}+\dfrac{1}{\left(z+x\right)^2}\ge\dfrac{27}{4\left(x+y+z\right)^2}\left(11\right)\)

Từ (10) và (11) ta có:

\(\left(x+y+z\right)^2\left(\dfrac{\dfrac{1}{\sqrt{xy}}}{\sqrt[5]{x^5+2023x^2y^2\sqrt{xy}+y^5}}+\dfrac{\dfrac{1}{\sqrt{yz}}}{\sqrt[5]{y^5+2023y^2z^2\sqrt{yz}+y^5}}+\dfrac{\dfrac{1}{\sqrt{zx}}}{\sqrt[5]{z^5+2023z^2x^2\sqrt{zx}+z^5}}\right)\)

\(\ge\dfrac{4}{\sqrt[5]{2023+2}}.\left(x+y+z\right)^2.\dfrac{27}{4\left(x+y+z\right)^2}=\dfrac{27}{\sqrt[5]{2023+2}}\left(đpcm\right)\)

Dấu "=" xảy ra khi \(x=y=z\)

 

 

1 tháng 1 2023

lâu rồi không gặp a, chúc mừng năm mới a, mà cái phương trình này lớp 9 còn e mới lớp 8 :)))))))))))))))

31 tháng 12 2019

bn viết xoáy ๖ۣۜCẩм ๖ۣۜLүღ__ kiểu j vậy ?

1 tháng 1 2016

hay quá nhà văn học 

1 tháng 1 2016

thank you very much 

tích nhé 

Sao chép bản quyền kinh thế bn

1 tháng 1 2020

ĐỒ ĂN CẮP BẢN QUYỀN

1 tháng 1 2017

cảm ơn bạn nhiều nha,chúc bạn 1 năm mới có 1 sức khỏe dồi dào,có thật nhiều tiền bạc và nhiều may mắn nhé!

1 tháng 1 2017

cảm ơn nha

30 tháng 1 2016

12 x 91 = 1092

30 tháng 1 2016

12x91=1092

4 tháng 2 2016

em cũng rứa

31 tháng 7 2021

ok con dª