Cho tỉ lệ thức: \(\frac{a}{b}=\frac{c}{d}\). CMR: \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ giả thiết: \(\frac{a}{b}=\frac{c}{d}\)=>ad=bc (1)
Ta có: ab(c2-d2)=abc2-abd2=acbc-adbd (2)
cd(a2-b2)=a2cd-b2cd=acad-bcbd (3)
Từ (1) ,(2),(3)=> ab(c2-d2)=cd(a2-b2)=>\(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\) (đpcm)
(a² + b²) / (c² + d²) = ab/cd
<=> (a² + b²)cd = ab(c² + d²)
<=> a²cd + b²cd = abc² + abd²
<=> a²cd - abc² - abd² + b²cd = 0
<=> ac(ad - bc) - bd(ad - bc) = 0
<=> (ac - bd)(ad - bc) = 0
<=> ac - bd = 0 hoặc ad - bc = 0
<=> ac = bd hoặc ad = bc
<=> a/b = d/c hoặc a/b = c/d (đpcm)
Ta có : \(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}=\frac{2ab}{2cd}=\frac{a^2+2ab+b^2}{c^2+2cd+d^2}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\frac{ab}{cd}\)
\(\Rightarrow\frac{\left(a+b\right)\left(a+b\right)}{\left(c+d\right)\left(c+d\right)}=\frac{ab}{cd}\)
\(\Rightarrow\frac{c\left(a+b\right)}{a\left(c+d\right)}=\frac{b\left(c+d\right)}{d\left(a+b\right)}=\frac{ca+cb}{ac+ad}=\frac{bc+db}{da+db}=\frac{ca-bd}{ca-bd}=1\)
\(\Rightarrow ca+cb=ac+ad\Rightarrow cb=ad\Rightarrow\frac{a}{b}=\frac{c}{d}\)
Ta có: \(\frac{a}{b}=\frac{c}{d}.\)
\(\Rightarrow\frac{a}{c}=\frac{b}{d}\)
\(\Rightarrow\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}.\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}.\)
\(\Rightarrow\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\left(đpcm\right).\)
Chúc bạn học tốt!
bây h ms rỗi, ik lục lại
bài m sai nhé
cho a.b/ c.d chứ ko cho a/b = c/d
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}< =>\left(a^2+b^2\right).cd=\left(c^2+d^2\right).ab< =>\left(a^2+b^2\right).cd-\left(c^2+d^2\right).ab=0\)
\(< =>a^2cd+b^2cd-c^2ab-d^2ab=0< =>\left(a^2cd-c^2ab\right)-\left(d^2ab-b^2cd\right)=0\)
\(< =>ac\left(ad-bc\right)-bd\left(ad-bc\right)=0< =>\left(ad-bc\right)\left(ac-bd\right)=0< =>ad-bc=0< =>ad=bc< =>\frac{a}{d}=\frac{b}{c}\) (đpcm)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}\)
=> \(\frac{a^2}{c^2}=\frac{b^2}{d^2}=\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}\)(Đpcm)
\(\frac{a}{b}=\frac{c}{d}\) => \(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)(Tính chất dãy tỉ số bằng nhau)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
=> \(\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(Đpcm)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) <=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2+2ab}{c^2+d^2+2cd}=\frac{\left(a+b\right)^2}{\left(c+d\right)^2}\) (1)
\(\frac{a^2+b^2}{c^2+d^2}=\frac{ab}{cd}\) <=> \(\frac{a^2+b^2}{c^2+d^2}=\frac{2ab}{2cd}=\frac{a^2+b^2-2ab}{c^2+d^2-2cd}=\frac{\left(a-b\right)^2}{\left(c-d\right)^2}\) (2)
Từ (1) và (2) suy ra: \(\frac{\left(a+b\right)^2}{\left(c+d\right)^2}=\left(\frac{a-b}{c-d}\right)^2\)
=> \(\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
Ta có: \(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b+a-b}{c+d+c-d}=\frac{2a}{2c}=\frac{a}{c}\)
\(\frac{a+b}{c+d}=\frac{a-b}{c-d}=\frac{a+b-a+b}{c+d-c+d}=\frac{2b}{2d}=\frac{b}{d}\)
=> \(\frac{a}{c}=\frac{b}{d}\) hay \(\frac{a}{b}=\frac{c}{d}\)
Cho tỉ lệ thức $\frac{a}{b}=\frac{c}{d}$ab =cd .C/minh $\frac{ab}{cd}=\frac{a^2-b^2}{c^2-d^2}$abcd =a2−b2c2−d2 và $\left(\frac{a+b}{c+d}\right)^2=\frac{a^2+b^2}{c^2+d^2}$(a+bc+d )2=a2+b2c2+d2
áp dụng tính chất dãy tỉ số bằng nhau