Cho hàm số f(x) = x 2 − |x|. Khẳng định nào sau đây là đúng.
A. f(x) là hàm số lẻ.
B. f(x) là hàm số chẵn
C. Đồ thị của hàm số f(x) đối xứng qua gốc tọa độ
D. Đồ thị của hàm số f(x) đối xứng qua trục hoành
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B
Dựa vào đồ thị hàm số f ' ( x ) ta thấy f ' ( x ) đổi dấu từ âm sang dương khi qua điểm x = 1 nên x = 1 là điểm cực tiểu của hàm số f ( x )
f ' ( x ) không đổi dấu khi đi qua điểm x = -2 nên x = -2 không phải điểm cực trị
Đáp án B
Dựa vào đồ thị hàm số f ' ( x ) ta thấy f ' ( x ) đổi dấu từ âm sang dương khi qua điểm x = 1 nên x = 1 là điểm cực tiểu của hàm số f ( x )
f ' ( x ) không đổi dấu khi đi qua điểm x = -2 nên x = -2 không phải điểm cực trị
Đáp án A
Phương pháp: Quan sát đồ thị hàm số y = f ' x để tìm khoảng dương, âm của f ' x , từ đó tìm được khoảng đồng biến, nghịch biến của f x .
Cách giải:
Từ đồ thị hàm số y = f ' x suy ra hàm số y = f x nghịch biến trên − ∞ − 1 và 1 ; 2 (làm y'âm) và đồng biến trên − 1 ; 1 (làm y'dương).
Suy ra B, C, D sai và A đúng.
Chú ý khi giải:
HS có thể nhầm lẫn thành đồ thị hàm số y = f x do đọc không kĩ đề dẫn đến chọn sai đáp án.
Đáp án C
Từ đồ thị hàm số g = f’(x) ta thấy: hàm số f’(x) = 0 tại 2 điểm phân biệt x = -2 và x = 1
Mặt khác, tại x = 1 thì f’(x) đổi dấu từ dương sang âm, do đó hàm số y = f(x) đạt cực đại tại x = 1
Đáp án B