Một tổ gồm 12 học sinh trong đó có bạn Lan. Hỏi có bao nhiêu cách chọn 4 em đi trực trong đó phải có Lan
A. 156
B. 165
C. 304
D. 204
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án C
TH1: 4 học sinh được chọn thuộc một lớp:
+ Lớp A có C 5 4 = 5 cách chọn.
+ Lớp B có C 4 4 = 1 cách chọn.
Trường hợp này có: 6 cách chọn.
TH2: 4 học sinh được chọn thuộc 2 lớp:
+ Lớp A và B: C 9 4 − C 5 4 + C 4 4 = 120 có .
+ Lớp B và C : C 7 4 − C 4 4 = 34 có
+ Lớp C và A: C 8 4 − C 5 4 = 65 có
Trường hợp này có 219 cách chọn.
Vậy có 225 cách chọn thỏa yêu cầu bài toán.
Đáp án B.
Số cách chọn ngẫu nhiên một học sinh của tổ đó trực nhật là: 5+6=11 (cách).
Đáp án B
Số cách chọn ngẫu nhiên 1 học sinh của tổ đó đi trực nhật là: C 11 1 = 11
Đáp án B
Số cách chọn ngẫu nhiên 1 học sinh của tổ đó đi trực nhật là:
C 11 1 = 11
Đáp án B
Số cách chọn ngẫu nhiên 1 học sinh của tổ đó đi trực nhật là
C 11 1 = 11
chọn đc 5 em học sinh có đúng 2 nữ vậy sẽ có 3 nam
số cách chọn đc là:\(C^2_6.C^3_8\)
[Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = [Số cách chọn 4 em trong 12 em] - [số cách chọn mà mỗi lớp có ít nhất 1 em]
Mà:
[Số cách chọn 4 em trong 12 em] = \(C^4_{12}=\frac{12!}{4!\left(12-4\right)!}=495\)
[số cách chọn mà mỗi lớp có ít nhất 1 em] = [Số cách chọn lớp A có 2 hs, lớp B, C mỗi lớp có 1 hs] + [Số cách chọn lớp B có 2 hs, lớp A, C mỗi lớp có 1 hs] + [Số cách chọn lớp C có 2 hs, lớp A, B mỗi lớp có 1 hs]
= \(C^2_5.C^1_4.C^1_3+C^1_5.C^2_4.C^1_3+C^1_5.C^1_4.C^2_3\)
= 120 + 90 + 60
= 270
Vậy [Số cách chọn 4 em sao cho thuộc không quá 2 trong 3 lớp] = 495 - 270 =....
Trường hợp 1: Chọn 3 nữ, 2 nam ⇒ có cách chọn
Trường hợp 2: Chọn 4 nữ, 1 nam có cách chọn
Do đó có cách chọn.
Chọn B.
Chọn Lan có 1 cách chọn.
Chọn 3 bạn trong 11 bạn còn lại có C 7 1 . C 4 1 . C 5 1 = 140 cách chọn.
Vậy có 165 cách chọn.
Chọn B.