Cho S=3^0+3^2+3^4+.......+3^2000+3^2002
a) Tính S
b) Chứng minh S chia hết cho 7
Trình bày luôn nha nếu thế mình tick cho
OK
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=1+3+3^2+3^3+3^4+...+3^2009
=(1+3)+(3^2+3^3)+...+(3^2008+3^2009)
=4+3^2(1+3)+...+3^2008(1+3)
=4(1+3^2+...+3^2008) chia hết cho 4
\(S=\left(1+3\right)+\left(3^2+3^3\right)+\left(3^4+3^5\right)+...+\left(3^8+3^9\right)=\)
\(=4+3^2\left(1+3\right)+3^4\left(1+3\right)+...+3^8\left(1+3\right)=\)
\(=4\left(1+3^2+3^4+...+3^8\right)⋮4\)
Lời giải:
$S=3^2+3^4+3^6+...+3^{998}+3^{1000}$
$3^2S=3^4+3^6+3^8+...+3^{1000}+3^{1002}$
$\Rightarrow 3^2S-S=3^{1002}-3^2$
$\Rightarrow 8S=3^{1002}-9$
$\Rightarrow S=\frac{3^{1002}-9}{8}$
b.
$S=3^2+3^4+(3^6+3^8+3^{10})+(3^{12}+3^{14}+3^{16})+...+(3^{996}+3^{998}+3^{1000})$
$=90+3^6(1+3^2+3^4)+3^{12}(1+3^2+3^4)+...+3^{996}(1+3^2+3^4)$
$=90+(1+3^2+3^4)(3^6+3^{12}+...+3^{996})$
$=90+91(3^6+3^{12}+...+3^{996})$
$=6+ 12.7+7.13(3^6+3^{12}+...+3^{996})$ chia $7$ dư $6$
Bài 1:
S= 3^0+3^2+3^4+........+3^2002
a, Tính S
B, Chứng minh S chia hết cho 7
Nhanh nhé, mình cho 2tick
S = ( 30 + 32 + 34 ) + ( 36 + 38 + 310 ) + ... + ( 31998 + 32000 + 32002 )
= ( 30 + 32 + 34 ) + 36 ( 30 + 32 + 34 ) + ... + 31998 ( 30 + 32 + 34 )
= ( 1 + 9 + 81 ) + 36(1 + 9 + 81) + ... + 31998.( 1 + 9 + 81 )
= 91 + 36 .91 + ... + 31998.91
= 91( 1 + 36 + ... + 31998 )
= 7.13( 1 + 36 + ... + 31998 ) chia hết cho 7
=> S chia hết cho 7 ( đpcm )
a ) Nhân cả hai vế của S với 32 ta đc :
32S = 32 ( 1 + 32 + 34 + ... + 32002 )
= 32 + 34 + 36 + ... + 32004
Trừ của 2 vế của 32S cho S ta được :
32S - S = ( 32 + 34 + 36 + ... + 32004 ) - ( 1 + 32 + 34 + ... + 32002 )
8S = 32004 - 1
\(\Rightarrow\frac{3^{2004}-1}{8}\)
3^2xS=3^2+3^4+3^6+...+3^100
=>3^2S-S=8S=3^100-3^2
=>S=(3^100-3^2):8
sai rùi không có cách nào hay hơn à
mình làm theo cách này kết quả khác.có cách nào hơn thì làm nha
a/ta có:s=(1-3+32-33)+.................+(396-397+398-399)
=-20+.....................+396.(-20.(1+...................396))
suy ra s chia het cho -20
b/ 3s=3-32+33-34+.................+399-3100
3s+s=(3-32+33-34+..........................+399-3100 +(1-3+32-33)+............+398-399)
4s=1-3100
s=(1-3100):4
vì s chia hết cho -20 suy ra s chia hết cho 4 suy ra 1-3100 chia hêt cho 4 suy ra 3100:4 dư 1
nếu đúng thì tíc cho mình 2 cái nhé!
a)S=3^0+3^2+3^4+...+3^2000+3^2002
=>3^2S=3^2(3^0+3^2+3^4+...+3^2000+3^2002)
=>9S=3^2+3^4+3^6+...+3^2002+3^2004
=>9S-S=(3^2+3^4+3^6+...+3^2004)-(3^0+3^2+3^4+...+3^2000+3^2002)
=>8S=3^2004-3^0=3^2004-1
=>S=(3^2004-1)/8
b) S=3^0+3^2+3^4+...+3^2000+3^2004
=>S=(3^0+3^2+3^4)+(3^6+3^8+3^10)+...+(3^1998+3^2000+3^2002)
=>S=(1+3^2+3^4)+3^6(1+3^2+3^4)+...+3^1998(1+3^2+3^4)
=>S=91+3^6.91+...+3^1998.91
=>S=91(1+3^6+...+3^1998)
=>S=7.13.(1+3^6+...+3^1998
=>S chia hết cho 7
b)Ta có:S=(30+32+34)+...(31996+31998+32000+32002)
S=91+...+31996.(1+32+34)
S=91+...+31996.91
S=91.(1+...+31996)
Vì 91chia hết cho 7 nên S chia hết cho 7