Hai xạ thủ cùng bắn, mỗi người một viên đạn vào bia một cách độc lập với nhau. Xác xuất bắn trúng bia của hai xạ thủ lần lượt là 1 2 và 1 3 . Tính xác suất của biến cố có ít nhất một xạ thủ không bắn trúng bia
A. 1 3
B. 1 6
C. 1 2
D. 2 3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là:
Xác suất để xạ thủ thứ hai bắn không trúng bia là:
Gọi biến cố A:Có ít nhất một xạ thủ không bắn trúng bia. Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là .
* Xác suất cả hai người đều bắn không trúng bia là .
Vậy .
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia” i = 1,2.
Khi đó, P(A1) =1/2; P(A2) = 1/3; A1 và A2 độc lập với nhau
X =A1∩ A2 nên P(X) = P(A1∩ A2) = P(A1.A2) = P(A1).P(A2) = 1/6
Chọn đáp án là B
Gọi A là biến cố “Xạ thủ thứ i bắn trúng bia”, i=1,2
TH1. Xạ thủ thứ nhất bắn trúng, xạ thủ 2 bắn trượt thì xác suất là:
P A 1 = 1 2 . 1 − 1 3
TH2. Xạ thủ thứ nhất bắn trượt, xạ thủ thứ 2 bắn trúng thì xác suất là:
P A 2 = 1 − 1 2 . 1 3
TH3. Cả 2 xạ thủ đều bắn trượt
P A 3 = 1 − 1 2 . 1 − 1 3
Xác suất của biến cố Y là:
P Y = P A 1 + P A 2 + P A 3 = 5 6
Đáp án. D
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P ( A . B ) = P ( A ) . P ( B )
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2 .
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 3 = 2 3 .
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3 .
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6 .
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó P ( A ) = 1 2 . 2 3 + 1 2 . 1 3 + 1 2 . 1 3 = 2 3 .
Đáp án D
Phương pháp:
A, B là các biến cố độc lập thì P(A.B) = P(A).P(B)
Chia bài toán thành các trường hợp:
- Một người bắn trúng và một người bắn không trúng,
- Cả hai người cùng bắn không trúng.
Sau đó áp dụng quy tắc cộng.
Cách giải:
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 2 = 1 2
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 - 1 3 = 2 3
Gọi biến cố A:”Có ít nhất một xạ thủ không bắn trúng bia ”.
Khi đó biến cố A có 3 khả năng xảy ra:
+) Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia: 1 2 . 2 3 = 1 3
+) Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia: 1 2 . 1 3 = 1 6
+) Xác suất cả hai người đều bắn không trúng bia:
Khi đó
Đáp án B.
Xác suất để xạ thủ thứ nhất bắn không trúng bia là: 1 − 1 2 = 1 2
Xác suất để xạ thủ thứ hai bắn không trúng bia là: 1 − 1 3 = 2 3
Gọi biến cố A: Có ít nhất một xạ thủ không bắn trúng bia . Khi có biến cố A có 3 khả năng xảy ra:
* Xác suất người thứ nhất bắn trúng bia, người thứ hai không bắn trúng bia là 1 2 . 2 3 = 1 3
* Xác suất người thứ nhất không bắn trúng bia, người thứ hai bắn trúng bia là 1 2 . 1 3 = 1 6
* Xác suất cả hai người đều bắn không trúng bia là 1 2 . 2 3 = 1 3