K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2018

12 tháng 8 2019

Đáp án A

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Do tam giác AHB vuông tại  H nên I thuộc trục của tam giác AHB. Tương tự I cũng thuộc trục của tam giác AKC. Suy ra I cách đều A, B, H,K, C nên nó là tâm mặt  cầu ngoại tiếp hình chóp A.BCKH. 

Gọi R là bán kính mặt cầu ngoại tiếp hình chóp A.BCKH thì R cũng là bán kính đường tròn ngoại tiếp tam giác ABC.

Ta có:

cot A + cot B + cot C  = b 2 + c 2 - a 2 4 S + a 2 + c 2 - b 2 4 S + a 2 + b 2 - c 2 4 S = a 2 + b 2 + c 2 4 S

Nên  c o t   A + c o t   B + c o t   C 2 = B C A B . A C + C A B C . B A + A B C A . C B

⇔ a 2 + b 2 + c 2 8 S = a . sin   A b c .   sin   A + b . sin   B c a .   sin   B + c . sin   C a b .   sin   C

⇔ a 2 + b 2 + c 2 8 S = a 2 4 R S + b 2 4 R S + c 2 4 R S ⇔ R = 2 ⇒ V = 4 3 πR 3 = 32 π 3

29 tháng 6 2017

Đề sai. Giả sử tam giác là tam giác đều thì ta có:

\(tan\left(30\right)+tan\left(30\right)=\frac{2\sqrt{3}}{3}>\frac{\sqrt{3}}{3}=tan\left(30\right)\)

Nếu nó đều thì bất đẳng thức bị sai là sao dùng bất đẳng thức đó để chứng minh nó đều được.

29 tháng 6 2017

Sửa đề:

\(\hept{\begin{cases}tan\frac{A}{2}+tan\frac{B}{2}\le2tan\frac{C}{2}\left(1\right)\\cot\frac{A}{2}+cot\frac{B}{2}\le2cot\frac{C}{2}\left(2\right)\end{cases}}\)

\(\left(2\right)\Leftrightarrow\frac{1}{tan\frac{A}{2}}+\frac{1}{tan\frac{B}{2}}\le\frac{2}{tan\frac{C}{2}}\le\frac{4}{tan\frac{A}{2}+tan\frac{B}{2}}\)

\(\Leftrightarrow\left(tan\frac{A}{2}+tan\frac{B}{2}\right)^2\le4tan\frac{A}{2}.tan\frac{B}{2}\)

\(\Leftrightarrow\left(tan\frac{A}{2}-tan\frac{B}{2}\right)^2\le0\)

Dấu = xảy ra khi \(tan\frac{A}{2}=tan\frac{B}{2}\)

\(\Rightarrow A=B\)

Thế lại hệ ban đầu ta được

\(\hept{\begin{cases}2tan\frac{A}{2}\le2tan\frac{C}{2}\\2cot\frac{A}{2}\le2cot\frac{C}{2}\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}tan\frac{A}{2}\le tan\frac{C}{2}\\tan\frac{A}{2}\ge tan\frac{C}{2}\end{cases}}\)

Dấu = xảy ra khi \(A=C\)

Vậy ta có được \(A=B=C\) nên tam giác ABC là tam giác đều.

20 tháng 10 2021

b: \(\cot\alpha=\dfrac{\cos\alpha}{\sin\alpha}\)

6 tháng 6 2019

Đáp án A

Gọi I là tâm đường tròn ngoại tiếp tam giác ABC. Do tam giác AHB vuông tại  H nên I thuộc trục của tam giác AHB. Tương tự I cũng thuộc trục của tam giác AKC. Suy ra I cách đều A, B, H,K, C nên nó là tâm mặt  cầu ngoại tiếp hình chóp A.BCKH Gọi R là bán kính mặt cầu ngoại tiếp hình chóp A.BCKH thì R cũng là bán kính đường tròn ngoại tiếp tam giác ABC.

Ta có:

NM
20 tháng 10 2021

ta có:

 . \(\hept{\begin{cases}tan\alpha=\frac{sin\alpha}{cos\alpha}\\cot\alpha=\frac{cos\alpha}{sin\alpha}\\tan\alpha\times cot\alpha=1\end{cases}}\)

HQ
Hà Quang Minh
Giáo viên
25 tháng 9 2023

Áp dụng hệ quả của định lí sin và định lí cosin, ta có:

\(\frac{a}{{\sin A}} = 2R \Rightarrow \sin A = \frac{a}{{2R}}\)

và \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}\)

\( \Rightarrow \cot A = \frac{{\cos A}}{{\sin A}} = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}}:\frac{a}{{2R}} = R.\frac{{{b^2} + {c^2} - {a^2}}}{{abc}}\)

Tương tự ta có: \(\cot B = R.\frac{{{a^2} + {c^2} - {b^2}}}{{abc}}\) và \(\cot C = R.\frac{{{a^2} + {b^2} - {c^2}}}{{abc}}\)

\(\begin{array}{l} \Rightarrow \cot A + \cot B + \cot C = \frac{R}{{abc}}\left[ {\left( {{b^2} + {c^2} - {a^2}} \right) + \left( {{a^2} + {c^2} - {b^2}} \right) + \left( {{a^2} + {b^2} - {c^2}} \right)} \right]\\ = \frac{R}{{abc}}\left( {2{b^2} + 2{c^2} + 2{a^2} - {a^2} - {c^2} - {b^2}} \right) = \frac{{R({a^2} + {b^2} + {c^2})}}{{abc}}\end{array}\)

NV
9 tháng 4 2022

Ta có:

\(cotA=\dfrac{cosA}{sinA}=\dfrac{b^2+c^2-a^2}{2bc}:\dfrac{2S}{bc}=\dfrac{b^2+c^2-a^2}{4S}\)

Tương tự...

Thay vào đề bài:

\(2\left(\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\right)=\dfrac{a^2+c^2-b^2}{4S}\)

\(\Rightarrow4b^2=a^2+c^2-b^2\Rightarrow5b^2=a^2+c^2\)

\(\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+c^2-\dfrac{a^2+c^2}{5}}{2ac}=\dfrac{2\left(a^2+c^2\right)}{5ac}\ge\dfrac{4ac}{5ac}=\dfrac{4}{5}\)

\(\Rightarrow sinB=\sqrt{1-cos^2B}\le\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)

Em kiểm tra lại đề, BĐT đề bài bị ngược dấu

10 tháng 4 2022

con cảm ơn thầy ạ.